66
Views
12
CrossRef citations to date
0
Altmetric
Review

Regulation of gene expression: probing DNA–protein interactions in vivo and in vitro

&
Pages 705-718 | Published online: 09 Jan 2014

References

  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
  • ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).
  • International Human GenomeSequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).
  • Kirmizis A, Farnham PJ. Genomic approaches that aid in the identification of transcription factor target genes. Exp. Biol. Med. (Maywood) 229, 705–721 (2004).
  • Carey M, Smale ST. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Cold Spring Harbor Laboratory Press, NY, USA, 640 (1999).
  • de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell Biol. 7, 725–737 (1987).
  • Cullen BR. Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol. 152, 684–704 (1987).
  • Plevy SE, Gemberling JH, Hsu S, Dorner AJ, Smale ST. Multiple control elements mediate activation of the murine and human interleukin-12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell Biol. 17, 4572–4588 (1997).
  • Galas DJ, Schmitz A. DNAse footprinting: a simple method for the detection of protein–DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).
  • Leblanc B, Moss T. DNase I footprinting. Methods Mol. Biol.148, 31–38 (2001).
  • Suck D. DNA recognition by DNase I. J. Mol. Recognit. 7, 65–70 (1994).
  • Rogers SG, Weiss B. Exonuclease III of Escherichia coli K-12, an AP endonuclease. Methods Enzymol. 65, 201–211 (1980).
  • Siebenlist U, Simpson RB, Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell 20, 269–281 (1980).
  • Shalloway D, Kleinberger T, Livingston DM. Mapping of SV40 DNA replication origin region binding sites for the SV40 T antigen by protection against exonuclease III digestion. Cell 20, 411–422 (1980).
  • Metzger W, Heumann H. Footprinting with exonuclease III. Methods Mol. Biol.148, 39–47 (2001).
  • Carey M, Kakidani H, Leatherwood J, Mostashari F, Ptashne M. An amino-terminal fragment of GAL4 binds DNA as a dimer. J. Mol. Biol. 209, 423–432 (1989).
  • Tullius TD, Dombroski BA, Churchill ME, Kam L. Hydroxyl radical footprinting: a high-resolution method for mapping protein–DNA contacts. Methods Enzymol. 155, 537–558 (1987).
  • Zaychikov E, Schickor P, Denissova L, Heumann H. Hydroxyl radical footprinting. Methods Mol. Biol.148, 49–61 (2001).
  • Fairall L, Rhodes D, Klug A. Mapping of the sites of protection on a 5 S RNA gene by the Xenopus transcription Factor IIIA. A model for the interaction. J. Mol. Biol. 192, 577–591 (1986).
  • Shaw PE, Stewart AF. Identification of protein–DNA contacts with dimethyl sulfate. Methylation protection and methylation interference. Methods Mol. Biol.148, 221–227 (2001).
  • Cartwright IL, Kelly SE. Probing the nature of chromosomal DNA–protein contacts by in vivo footprinting. Biotechniques 11, 188–190, 192–184, 196 passim (1991).
  • Pfeifer GP, Singer-Sam J, Riggs AD. Analysis of methylation and chromatin structure. Methods Enzymol. 225, 567–583 (1993).
  • Rouget R, Vigneault F, Codio C et al. Characterization of the survival motor neurone (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated p19 cells. Biochem. J. 385, 433–443 (2005).
  • Dorschner MO, Hawrylycz M, Humbert R et al. High-throughput localization of functional elements by quantitative chromatin profiling. Nature Methods 1, 219–225 (2004).
  • Nardone J, Lee DU, Ansel KM, Rao A. Bioinformatics for the ‘bench biologist’: how to find regulatory regions in genomic DNA. Nature Immunol. 5, 768–774 (2004).
  • Stormo GD. DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000).
  • Scott MS, Perkins T, Bunnell S, Pepin F, Thomas DY, Hallett MT. Identifying regulatory subnetworks for a set of genes. Mol. Cell. Proteomics 4(5), 683–692 (2005).
  • Marinescu VD, Kohane IS, Riva A. The MAPPER database: a multi-genome catalog of putative transcription factor binding sites. Nucleic Acids Res. 33(Database issue), D91–D97 (2005).
  • Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 32, W249–W252 (2004).
  • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nature Rev. Genet. 5, 276–287 (2004).
  • Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).
  • Qiu P. Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem. Biophys. Res. Commun. 309, 495–501 (2003).
  • Fried MG. Measurement of protein–DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10, 366–376 (1989).
  • Crothers DM, Gartenberg MR, Shrader TE. DNA bending in protein–DNA complexes. Methods Enzymol. 208, 118–146 (1991).
  • Fried MG, Daugherty MA. Electrophoretic analysis of multiple protein–DNA interactions. Electrophoresis 19, 1247–1253 (1998).
  • Fried MG, Bromberg JL. Factors that affect the stability of protein–DNA complexes during gel electrophoresis. Electrophoresis 18, 6–11 (1997).
  • Molloy PL. Electrophoretic mobility shift assays. Methods Mol. Biol.130, 235–246 (2000).
  • Laniel MA, Beliveau A, Guerin SL. Electrophoretic mobility shift assays for the analysis of DNA–protein interactions. Methods Mol. Biol.148, 13–30 (2001).
  • Zhang W, Shields JM, Sogawa K, Fujii-Kuriyama Y, Yang VW. The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J. Biol. Chem. 273, 17917–17925 (1998).
  • Gille J, Swerlick RA, Caughman SW. Transforming growth factor-α-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J. 16, 750–759 (1997).
  • Murakami Y, Huberman JA, Hurwitz J. Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 93, 502–507 (1996).
  • Kironmai KM, Muniyappa K, Friedman DB, Hollingsworth NM, Byers B. DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae. Mol. Cell Biol. 18, 1424–1435 (1998).
  • Laniel MA, Bergeron MJ, Poirier GG, Guerin SL. A nuclear factor other than Sp1 binds the GC-rich promoter of the gene encoding rat poly(ADP-ribose) polymerase in vitro. Biochem. Cell Biol. 75, 427–434 (1997).
  • Zaniolo K, Leclerc S, Cvekl A et al. Expression of the α4 integrin subunit gene promoter is modulated by the transcription factor Pax-6 in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 45, 1692–1704 (2004).
  • Granger-Schnarr M, Lloubes R, de Murcia G, Schnarr M. Specific protein–DNA complexes: immunodetection of the protein component after gel electrophoresis and western blotting. Anal. Biochem. 174, 235–238 (1988).
  • Demczuk S, Harbers M, Vennstrom B. Identification and analysis of all components of a gel retardation assay by combination with immunoblotting. Proc. Natl Acad. Sci. USA90, 2574–2578 (1993).
  • Dyer RB, Herzog NK. Immunodepletion EMSA: a novel method to identify proteins in a protein–DNA complex. Nucleic Acids Res. 23, 3345–3346 (1995).
  • Laniel MA, Poirier GG, Guerin SL. Nuclear factor 1 interferes with Sp1 binding through a composite element on the rat poly(ADP-ribose) polymerase promoter to modulate its activity in vitro. J. Biol. Chem. 276, 20766–20773 (2001).
  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).
  • Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).
  • Boyd KE, Farnham PJ. Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol. Cell Biol. 17, 2529–2537 (1997).
  • Boyd KE, Wells J, Gutman J, Bartley SM, Farnham PJ. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl Acad. Sci. USA95, 13887–13892 (1998).
  • Im H, Grass JA, Johnson KD, Boyer ME, Wu J, Bresnick EH. Measurement of protein–DNA interactions in vivo by chromatin immunoprecipitation. Methods Mol. Biol.284, 129–146 (2004).
  • Johnson KD, Bresnick EH. Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26, 27–36 (2002).
  • Kuras L. Characterization of protein–DNA association in vivo by chromatin immunoprecipitation. Methods Mol. Biol.284, 147–162 (2004).
  • Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. Virus infection induces the assembly of co-ordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1, 507–518 (1998).
  • Johnson KD, Christensen HM, Zhao B, Bresnick EH. Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol. Cell 8, 465–471 (2001).
  • Solomon MJ, Varshavsky A. Formaldehyde-mediated DNA–protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl Acad. Sci. USA82, 6470–6474 (1985).
  • Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56 (2002).
  • de Belle I, Cai S, Kohwi-Shigematsu T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol. 141, 335–348 (1998).
  • Kohwi-Shigematsu T, deBelle I, Dickinson LA, Galande S, Kohwi Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol. 53, 323–354 (1998).
  • Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell Biol. 21, 6820–6832 (2001).
  • Weinmann AS, Farnham PJ. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47 (2002).
  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).
  • Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).
  • Lieb JD, Liu X, Botstein D, Brown PO. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genet. 28, 327–334 (2001).
  • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).
  • Hayakawa J, Mittal S, Wang Y et al. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol. Cell 16, 521–535 (2004).
  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc. Natl Acad. Sci. USA100, 8164–8169 (2003).
  • Odom DT, Zizlsperger N, Gordon DB et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).
  • Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16, 235–244 (2002).
  • Zhang L, Kasif S, Cantor CR, Broude NE. GC/AT-content spikes as genomic punctuation marks. Proc. Natl Acad. Sci. USA101, 16855–16860 (2004).
  • Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nature Genet. 26, 61–63 (2000).
  • Hannenhalli S, Levy S. Promoter prediction in the human genome. Bioinformatics 17(Suppl. 1), S90–S96 (2001).
  • Mukherjee S, Berger MF, Jona G et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genet. 36, 1331–1339 (2004).
  • Ren B, Cam H, Takahashi Y et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).
  • Martone R, Euskirchen G, Bertone P et al. Distribution of NF-κB-binding sites across human chromosome 22. Proc. Natl Acad. Sci. USA100, 12247–12252 (2003).
  • Cawley S, Bekiranov S, Ng HH et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
  • Kim J, Bhinge AA, Morgan XC, Iyer VR. Mapping DNA–protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nature Methods 2, 47–53 (2004).
  • Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355 (1989).
  • Shinkaruk S, Bayle M, Lain G, Deleris G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr. Med. Chem. 3, 95–117 (2003).
  • Colombel M, Filleur S, Fournier P et al. Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate. Cancer Res. 65, 300–308 (2005).
  • Filleur S, Courtin A, Ait-Si-Ali S et al. siRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to anti-angiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 63, 3919–3922 (2003).
  • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).
  • Boeger H, Bushnell DA, Davis Ret al. Structural basis of eukaryotic gene transcription. FEBS Lett. 579, 899–903 (2005).
  • Wu J, Grunstein M. 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25, 619–623 (2000).
  • Pfeifer A, Verma IM. Gene therapy: promises and problems. Ann. Rev. Genomics Hum. Genet. 2, 177–211 (2001).
  • Somia N, Verma IM. Gene therapy: trials and tribulations. Nature Rev. Genet. 1, 91–99 (2000).
  • Verma IM, Somia N. Gene therapy – promises, problems and prospects. Nature 389, 239–242 (1997).
  • Langer R. Drug delivery and targeting. Nature 392, 5–10 (1998).
  • Duncan R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).
  • Gillies ER, Frechet JM. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) ‘bow-tie’ hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc. 124, 14137–14146 (2002).
  • Kataoka K, Matsumoto T, Yokoyama M et al. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-L-aspartate) co-polymer micelles: their pharmaceutical characteristics and biological significance. J. Control Release 64, 143–153 (2000).
  • Nashat AH, Moronne M, Ferrari M. Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy. Biotechnol. Bioeng. 60, 137–146 (1998).
  • Cohen MH, Melnik K, Boiasrki A, Ferrari M, Martin FJ. Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed. Microdevices 5, 253–259 (2003).
  • He XX, Wang K, Tan W et al. Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 125, 7168–7169 (2003).
  • Yan F, Kopelman R. The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem. Photobiol. 78, 587–591 (2003).
  • Li X, St John J, Coffer JL et al. Porosified silicon wafer structures impregnated with platinum antitumor compounds: fabrication, characterization, and diffusion studies. Biomed. Microdevices 2, 265–273 (2000).
  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).
  • Lee KE, Kim BK, Yuk SH. Biodegradable polymeric nanospheres formed by temperature-induced phase transition in a mixture of poly(lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer. Biomacromolecules 3, 1115–1119 (2002).
  • Loo C, Lin A, Hirsch L et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. 3, 33–40 (2004).
  • Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100, 13549–13554 (2003).
  • Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL. A whole blood immunoassay using gold nanoshells. Anal. Chem.75, 2377–2381 (2003).
  • Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).
  • Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).
  • Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002).
  • Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4, 95–99 (2002).
  • Chang TM, Prakash S. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol. 17, 249–260 (2001).
  • Kneuer C, Sameti M, Bakowsky U et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem. 11, 926–932 (2000).
  • Radler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814 (1997).
  • Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933 (2004).
  • Lewin M, Carlesso N, Tung CH et al. TAT peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18, 410–414 (2000).
  • Ellerby HM, Arap W, Ellerby LM et al. Anticancer activity of targeted pro-apoptotic peptides. Nature Med. 5, 1032–1038 (1999).
  • Arap W, Haedicke W, Bernasconi M et al. Targeting the prostate for destruction through a vascular address. Proc. Natl Acad. Sci. USA 99, 1527–1531 (2002).
  • Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).
  • Lee KB, Lim JH, Mirkin CA. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).
  • Bruckbauer A, Zhou D, Kang DJ, Korchev YE, Abell C, Klenerman D. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 126, 6508–6509 (2004).
  • Chen H, Han J, Li J, Meyyappan M. Microelectronic DNA assay for the detection of BRCA1 gene mutations. Biomed. Microdevices 6, 55–60 (2004).
  • Hansen KM, Ji HF, Wu G et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem.73, 1567–1571 (2001).
  • Majumdar A. Bioassays based on molecular nanomechanics. Dis. Markers 18, 167–174 (2002).
  • Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).
  • Choo Y, Sanchez-Garcia I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642–645 (1994).
  • Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription Factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).
  • Klug A. Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett. 579, 892–894 (2005).
  • Rebar EJ, Huang Y, Hickey R et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nature Med. 8, 1427–1432 (2002).
  • Liu PQ, Rebar EJ, Zhang L et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).
  • Puck JM. Molecular basis for three X-linked immune disorders. Hum. Mol. Genet. 3, 1457–1461 (1994).
  • Ochs HD, Notarangelo LD. X-linked immunodeficiencies. Curr. Allergy Asthma Rep. 4, 339–348 (2004).
  • Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics 21, 971–994 (2001).
  • Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).
  • Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

Website

  • McKusick VA. OMIM Number +113705, Johns Hopkins University, Baltimore, MD, USA (2005) www.ncbi.nlm.nih.gov/omim (Viewed September 2005)

Patent

  • Ferrari M. Therapeutic microdevices and methods of making and using same. US Patent 6,107,102, USA (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.