1,108
Views
204
CrossRef citations to date
0
Altmetric
Review

Histone structure and nucleosome stability

, , &
Pages 719-729 | Published online: 09 Jan 2014

References

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648), 251–260 (1997).
  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319(5), 1097–1113 (2002).
  • Dorigo B, Schalch T, Kulangara A et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306(5701), 1571–1573 (2004).
  • van Holde KE. Chapter 7: Highter order structure. In: Chromatin. Springer-Verlag, London, UK, 317–354 (1988).
  • Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science 306(5701), 1574–1577 (2004).
  • Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl Acad. Sci. USA 92(24), 11170–11174 (1995).
  • Peterson CL, Laniel MA. Histones and histone modifications. Curr. Biol. 14(14), R546–R551 (2004).
  • Rakyan VK, Hildmann T, Novik KL et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2(12), e405 (2004).
  • Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19(5), 542–552 (2005).
  • Roh TY, Ngau WC, Cui K, Landsman D, Zhao K. High-resolution genome-wide mapping of histone modifications. Nature Biotechnol. 22(8), 1013–1016 (2004).
  • Dion MF, Altschuler SJ, Wu LF, Rando OJ. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl Acad. Sci. USA (2005).
  • Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell 117(6), 721–733 (2004).
  • Kornberg RD, Thomas JO. Chromatin structure; oligomers of the histones. Science 184(139), 865–868 (1974).
  • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science 184(139), 868–871 (1974).
  • Kelley RI. Isolation of a histone IIb1–IIb2 complex. Biochem. Biophys. Res. Commun. 54(4), 1588–1594 (1973).
  • Olins AL, Olins DE. Spheroid chromatin units (v bodies). Science 183(122), 330–332 (1974).
  • Woodcock CL. Ultrastructure of inactive chromatin. J. Cell Biol. 59(2), 368a (1973).
  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311(5986), 532–537 (1984).
  • Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res. 23(14), 2685–2691 (1995).
  • Kokubo T, Gong DW, Wootton JC et al. Molecular cloning of Drosophila TFIID subunits. Nature 367(6462), 484–487 (1994).
  • Jenuwein T, Allis CD. Translating the histone code. Science 293(5532), 1074–1080 (2001).
  • Brower-Toland B, Wacker DA, Fulbright RM et al. Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes. J. Mol. Biol. 346(1), 135–146 (2005).
  • Zheng C, Hayes JJ. Structures and interactions of the core histone tail domains. Biopolymers 68(4), 539–546 (2003).
  • Dorigo B, Schalch T, Bystricky K, Richmond TJ. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327(1), 85–96 (2003).
  • Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K. Structure and dynamic properties of nucleosome core particles. FEBS Lett. 579(4), 895–898 (2005).
  • Luger K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13(2), 127–135 (2003).
  • Sullivan SA, Landsman D. Characterization of sequence variability in nucleosome core histone folds. Proteins 52(3), 454–465 (2003).
  • Klug A, Rhodes D, Smith J, Finch JT, Thomas JO. A low resolution structure for the histone core of the nucleosome. Nature 287(5782), 509–516 (1980).
  • Muthurajan UM, Bao Y, Forsberg LJ et al. Crystal structures of histone Sin mutant nucleosomes reveal altered protein–DNA interactions. EMBO J. 23(2), 260–271 (2004).
  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7(12), 1121–1124 (2000).
  • Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nature Struct. Mol. Biol. 11(11), 1037–1043 (2004).
  • Korber P, Horz W. SWRred not shaken; mixing the histones. Cell 117(1), 5–7 (2004).
  • Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nature Struct. Biol. 10(11), 882–891 (2003).
  • Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 19(3), 295–310 (2005).
  • Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20(7), 320–326 (2004).
  • Park YJ, Chodaparambil JV, Bao Y, McBryant SJ, Luger K. Nucleosome assembly protein 1 exchanges histone H2A–H2B dimers and assists nucleosome sliding. J. Biol. Chem. 280(3), 1817–1825 (2005).
  • Saeki H, Ohsumi K, Aihara H et al. Linker histone variants control chromatin dynamics during early embryogenesis. Proc. Natl Acad. Sci. USA 102(16), 5697–5702 (2005).
  • Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112(5), 725–736 (2003).
  • Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J. Cell Biol. 152(2), 375–384 (2001).
  • Bao Y, Konesky K, Park YJ et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23(16), 3314–3324 (2004).
  • Gautier T, Abbott DW, Molla A et al. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO J. 5(7), 715–720 (2004).
  • Costanzi C, Stein P, Worrad DM, Schultz RM, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127(11), 2283–2289 (2000).
  • Ladurner AG. Inactivating chromosomes: a macro domain that minimizes transcription. Mol. Cell12(1), 1–3 (2003).
  • Angelov D, Molla A, Perche PY et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell11(4), 1033–1041 (2003).
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273(10), 5858–5868 (1998).
  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5(7), 675–679 (2003).
  • Thiriet C, Hayes JJ. Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell18(6), 617–622 (2005).
  • Strickland M, Strickland WN, Brandt WF, Von Holt C. The complete amino-acid sequence of histone H2B(1) from sperm of the sea urchin Parechinus angulosus. Eur. J. Biochem. 77(2), 263–275 (1977).
  • Lieber T, Weisser K, Childs G. Analysis of histone gene expression in adult tissues of the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus: tissue-specific expression of sperm histone genes. Mol. Cell Biol. 6(7), 2602–2612 (1986).
  • Ueda K, Kinoshita Y, Xu ZJ et al. Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108(8), 491–500 (2000).
  • Aul RB, Oko RJ. The major subacrosomal occupant of bull spermatozoa is a novel histone H2B. Dev. Biol. 242(2), 376–387 (2002).
  • Zalensky AO, Siino JS, Gineitis AA et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J. Biol. Chem. 277(45), 43474–43480 (2002).
  • Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell9(6), 1191–1200 (2002).
  • Witt O, Albig W, Doenecke D. Testis-specific expression of a novel human H3 histone gene. Exp. Cell Res. 229(2), 301–306 (1996).
  • Albig W, Ebentheuer J, Klobeck G, Kunz J, Doenecke D. A solitary human H3 histone gene on chromosome 1. Hum. Genet. 97(4), 486–491 (1996).
  • Akhmanova A, Miedema K, Hennig W. Identification and characterization of the Drosophila histone H4 replacement gene. FEBS Lett. 388(2–3), 219–222 (1996).
  • Freitas MA, Sklenar AR, Parthun MR. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J. Cell Biochem. 92(4), 691–700 (2004).
  • Turner BM. Decoding the nucleosome. Cell 75(1), 5–8 (1993).
  • Henikoff S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA 102(15), 5308–5309 (2005).
  • Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121(3), 375–385 (2005).
  • Oliva R, Bazett-Jones DP, Locklear L, Dixon GH. Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res. 18(9), 2739–2747 (1990).
  • Dunker AK, Lawson JD, Brown CJ et al. Intrinsically disordered protein. J. Mol. Graph Model 19(1), 26–59 (2001).
  • Ptitsyn OB. Molten globule and protein folding. Adv. Protein Chem. 47, 83–229 (1995).
  • Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262(5140), 1718–1721 (1993).
  • Tuma R, Coward LU, Kirk MC, Barnes S, Prevelige PE Jr. Hydrogen–deuterium exchange as a probe of folding and assembly in viral capsids. J. Mol. Biol. 306(3), 389–396 (2001).
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293(2), 321–331 (1999).
  • Iakoucheva LM, Radivojac P, Brown CJ et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32(3), 1037–1049 (2004).
  • Schalch T, Duda S, Sargent DF, Richmond TJ. X ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436(7047), 138–141 (2005).
  • Nicholls A, Sharp KA, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11(4), 281–296 (1991).
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997).
  • Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 14(6), 1188–1190 (2004).

Websites

  • Marino-Ramirez L, Hsu B, Baxevanis AD, Landsman D. NHGRI/NCBI. http://research.nhgri.nih.gov/histones (Viewed September 2005)
  • Delano WL. The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA, USA. www.pymol.org (Viewed September 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.