368
Views
64
CrossRef citations to date
0
Altmetric
Review

Determination of protein-derived epitopes by mass spectrometry

&
Pages 745-756 | Published online: 09 Jan 2014

References

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass-spectrometry of large biomolecules. Science 246(4926), 64–71 (1989).
  • Tanaka K. The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew Chem. Int. Ed. Engl. 42(33), 3860–3870 (2003).
  • Borchers C, Tomer KB. Characterization of the noncovalent complex of human immunodeficiency virus glycoprotein 120 with its cellular receptor CD4 by matrix-assisted laser desorption/ionization mass spectrometry. Biochemistry 38(36), 11734–11740 (1999).
  • Kiselar JG, Downard KM. Preservation and detection of specific antibody–peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11(8), 746–750 (2000).
  • Loo JA. Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200(1–3), 175–186 (2000).
  • Sobott F, Robinson CV. Protein complexes gain momentum. Curr. Opin. Struct. Biol. 12(6), 729–734 (2002).
  • Zhu XG, Borchers C, Bienstock RJ, Tomer KB. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in cho cells. Biochemistry 39(37), 11194–11204 (2000).
  • Purcell AW, Gorman JJ. Immunoproteomics – mass spectrometry-based methods to study the targets of the immune response. Mol. Cell. Proteomics 3(3), 193–208 (2004).
  • Lemmel C, Stevanovic S. The use of HPLC-MS in T-cell epitope identification. Methods 29(3), 248–259 (2003).
  • Admon A, Barnea E, Ziv T. Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol. Cell. Proteomics 2(6), 388–398 (2003).
  • Bonner PLR, Lill JR, Hill S, Creaser CS, Rees RC. Electrospray mass spectrometry for the identification of MHC class I-associated peptides expressed on cancer cells. J. Immunol. Methods 262(1–2), 5–19 (2002).
  • Downard KM. Contributions of mass spectrometry to structural immunology. J. Mass Spectrom. 35(4), 493–503 (2000).
  • de Jong A. Contribution of mass spectrometry to contemporary immunology. Mass Spectrom. Rev.17(5), 311–335 (1998).
  • Goldbaum FA, Cauerhff A, Velikovsky CA, Llera AS, Riottot MM, Poljak RJ. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. J. Immunol. 162(10), 6040–6045 (1999).
  • Butler JE. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22(1), 4–23 (2000).
  • Mullett WM, Lai EPC, Yeung JM. Surface plasmon resonance-based immunoassays. Methods 22(1), 77–91 (2000).
  • Rich RL, Myszka DG. Spying on HIV with SPR. Trends Microbiol. 11(3), 124–133 (2003).
  • Lipschultz CA, Li YL, Smith-Gill S. Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20(3), 310–318 (2000).
  • Malmqvist M. Epitope mapping by label-free biomolecular interaction analysis. Methods 9(3), 525–532 (1996).
  • Wang LF, Yu M. Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr. Drug Targets 5(1), 1–15 (2004).
  • Irving MB, Pan O, Scott JK. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr. Opin. Chem. Biol. 5(3), 314–324 (2001).
  • ZwickMB, Jensen R, Church S et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1 J. Virol. 79(2), 1252–1261 (2005).
  • Wishart D. NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr. Pharm. Biotechnol. 6(2), 105–120 (2005).
  • Liu HL, Hsu JP. Recent developments in structural proteomics for protein structure determination. Proteomics 5(8), 2056–2068 (2005).
  • Pusey ML, Liu ZJ, Tempel W et al. Life in the fast lane for protein crystallization and x-ray crystallography. Prog. Biophys. Mol. Biol. 88(3), 359–386 (2005).
  • Morikis D, Lambris JD. Physical methods for structure, dynamics and binding in immunological research. Trends Immunol. 25(12), 700–707 (2004).
  • Hunte C, Michel H. Crystallisation of membrane proteins mediated by antibody fragments. Curr. Opin. Struct. Biol. 12(4), 503–508 (2002).
  • Kovari LC, Momany C, Rossmann MG. The use of antibody fragments for crystallization and structure determinations. Structure 3(12), 1291–1293 (1995).
  • Macht M, Marquardt A, Deininger SO, Damoc E, Kohlmann M, Przybylski M. ‘Affinity-proteomics’: direct protein identification from biological material using mass spectrometric epitope mapping. Anal. Bioanal. Chem. 378(4), 1102–1111 (2004).
  • Wysocki VH, Resing KA, Zhang QF, Cheng GL. Mass spectrometry of peptides and proteins. Methods 35(3), 211–222 (2005).
  • Milstein C. With the benefit of hindsight. Immunol. Today 21(8), 359–364 (2000).
  • Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG. Monoclonal antibodies. Mol. Pathol. 53(3), 111–117 (2000).
  • Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB-c mice. J. Immunol. 131(6), 2895–2902 (1983).
  • Jemmerson R, Paterson Y. Mapping epitopes on a protein antigen by the proteolysis of antigen–antibody complexes. Science 232(4753), 1001–1004 (1986).
  • Suckau D, Kohl J, Karwath G et al. Molecular epitope identification by limited proteolysis of an immobilized antigen–antibody complex and mass spectrometric peptide mapping. Proc. Natl Acad. Sci. USA 87(24), 9848–9852 (1990).
  • Legros V, Jolivet-Reynaud C, Battail-Poirot N, Saint-Pierre C, Forest E. Characterization of an anti-Borrelia burgdorferi OspA conformational epitope by limited proteolysis of monoclonal antibody-bound antigen and mass spectrometric peptide mapping. Protein Sci. 9(5), 1002–1010 (2000).
  • Zhao YM, Muir TW, Kent SBH, Tischer E, Scardina JM, Chait BT. Mapping protein–protein interactions by affinity-directed mass spectrometry. Proc. Natl Acad. Sci. USA 93(9), 4020–4024 (1996).
  • Kiselar JG, Downard KM. Direct identification of protein epitopes by mass spectrometry without immobilization of antibody and isolation of antibody–peptide complexes. Anal. Chem. 71(9), 1792–1801 (1999).
  • McLaurin J, Cecal R, Kierstead ME et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med. 8(11), 1263–1269 (2002).
  • Papac DI, Hoyes J, Tomer KB. Direct analysis of affinity-bound analytes by MALDI/TOF MS. Anal. Chem. 66(17), 2609–2613 (1994).
  • Papac DI, Hoyes J, Tomer KB. Epitope mapping of the gastrin-releasing peptide antibombesin monoclonal-antibody complex by proteolysis followed by matrix-assisted laser-desorption ionization mass-spectrometry. Protein Sci. 3(9), 1485–1492 (1994).
  • Jeyarajah S, Parker CE, Sumner MT, Tomer KB. Matrix-assisted laser desorption ionization mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody. J. Am. Soc. Mass Spectrom. 9(2), 157–165 (1998).
  • Parker CE, Papac DI, Trojak SK, Tomer KB. Epitope mapping by mass spectrometry – determination of an epitope on HIV-1(IIIb) p26 recognized by a monoclonal antibody. J. Immunol. 157(1), 198–206 (1996).
  • Peter JF, Tomer KB. A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal. Chem. 73(16), 4012–4019 (2001).
  • Parker CE, Deterding LJ, Hager-Braun C et al. Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus Type 1 for the neutralizing monoclonal antibody 2f5. J. Virol. 75(22), 10906–10911 (2001).
  • Yi J, Skalka AM. Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biopolymers 55(4), 308–318 (2000).
  • Hochleitner EO, Gorny MK, Zolla-Pazner S, Tomer KB. Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. J. Immunol. 164(8), 4156–4161 (2000).
  • Macht M, Fiedler W, Kurzinger K, Przybylski M. Mass spectrometric mapping of protein epitope structures of myocardial infarct markers myoglobin and troponin T. Biochemistry 35(49), 15633–15639 (1996).
  • Zhao YM, Chait BT. Protein epitope mapping by mass-spectrometry. Anal. Chem. 66(21), 3723–3726 (1994).
  • Hager-Braun C, Tomer KB. Determination of epitopes by mass spectrometry. Methods Mol. Med. 94, 109–120 (2004).
  • Burnens A, Demotz S, Corradin G, Binz H, Bosshard HR. Epitope mapping by chemical modification of free and antibody-bound protein antigen. Science 235(4790), 780–783 (1987).
  • Glocker MO, Borchers C, Fiedler W, Suckau D, Przybylski M. Molecular characterization of surface-topology in protein tertiary structures by amino-acylation and mass-spectrometric peptide-mapping. Bioconjug. Chem. 5(6), 583–590 (1994).
  • Wood TD, Guan ZQ, Borders CL, Chen LH, Kenyon GL, McLafferty FW. Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Proc. Natl Acad. Sci. USA 95(7), 3362–3365 (1998).
  • Steiner RF, Albaugh S, Fenselau C, Murphy C, Vestling M. A mass-spectrometry method for mapping the interface topography of interacting proteins, illustrated by the melittin–calmodulin system. Anal. Biochem. 196(1), 120–125 (1991).
  • Hager-Braun C, Tomer KB. Characterization of the tertiary structure of soluble CD4 bound to glycosylated full-length HIVgp120 by chemical modification of arginine residues and mass spectrometric analysis. Biochemistry 41(6), 1759–1766 (2002).
  • Strohalm M, Santrucek J, Hynek R, Kodicek M. Analysis of tryptophan surface accessibility in proteins by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323(4), 1134–1138 (2004).
  • Santrucek J, Strohalm M, Kadlcik V, Hynek R, Kodicek M. Tyrosine residues modification studied by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323(4), 1151–1156 (2004).
  • Alcalde M, Plou FJ, Perez-Boada M et al. Chemical modification of carboxylic residues in a cyclodextrin glucanotransferase and its implication in the hydrolysis/transglycosylation ratio of the α-amylase family. J. Mol. Catal. B Enzym. 26(1–2), 57–67 (2003).
  • Hochleitner EO, Borchers C, Parker C, Bienstock RJ, Tomer KB. Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Sci. 9(3), 487–496 (2000).
  • Fiedler W, Borchers C, Macht M, Deininger SO, Przybylski M. Molecular characterization of a conformational epitope of hen egg white lysozyme by differential chemical modification of immune complexes and mass spectrometric peptide mapping. Bioconjug. Chem. 9(2), 236–241 (1998).
  • Yan XG, Watson J, Ho PS, Deinzer ML. Mass spectrometric approaches using electrospray ionization charge states and hydrogen–deuterium exchange for determining protein structures and their conformational changes. Mol. Cell. Proteomics 3(1), 10–23 (2004).
  • Milne JS, Mayne L, Roder H, Wand AJ, Englander SW. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 7(3), 739–745 (1998).
  • Busenlehner LS, Armstrong RN. Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch. Biochem. Biophys. 433(1), 34–46 (2005).
  • Hoofnagle AN, Resing KA, Ahn NG. Protein analysis by hydrogen exchange mass spectrometry. Ann. Rev. Biophys. Biomol. Struct. 32, 1–25 (2003).
  • Yamada N, Suzuki E, Hirayama K. Identification of the interface of a large protein–protein complex using H/D exchange and fourier transform ion cyclotron resonance mass spectrometry. Rapid Comm. Mass Spectrom. 16(4), 293–299 (2002).
  • Ehring H. Hydrogen exchange electrospray ionization mass spectrometry studies of structural features of proteins and protein/protein interactions. Anal. Biochem. 267(2), 252–259 (1999).
  • Baerga-Ortiz A, Hughes CA, Mandell JG, Komives EA. Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci. 11(6), 1300–1308 (2002).
  • Uhlen M, Ponten F. Antibody-based proteomics for human tissue profiling. Mol. Cell. Proteomics 4(4), 384–393 (2005).
  • Xiao Z, Prieto D, Conrads TP, Veenstra TD, Issaq HJ. Proteomic patterns: their potential for disease diagnosis. Mol. Cell. Endocrinol. 230(1–2), 95–106 (2005).
  • Keler T, He LZ, Graziano RF. Development of antibody-targeted vaccines. Curr. Opin. Mol. Ther. 7(2), 157–163 (2005).
  • Waldmann TA. Immunotherapy: past, present and future. Nature Med. 9(3), 269–277 (2003).
  • Klade CS. Proteomics approaches towards antigen discovery and vaccine development. Curr. Opin. Mol. Ther. 4(3), 216–223 (2002).
  • Ofek G, Tang M, Sambor A et al. Structure and mechanistic analysis of the antihuman immunodeficiency virus Type 1 antibody 2f5 in complex with its gp41 epitope. J. Virol. 78(19), 10724–10737 (2004).
  • Cardoso RMF, Zwick MB, Stanfield RL et al. Broadly neutralizing antiHIV antibody 4e10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22(2), 163–173 (2005).
  • Kwong PD, Wyatt R, Majeed S et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8(12), 1329–1339 (2000).

Website

  • NCBI: Genomic Biology www.ncbi.nih.gov/Genomes (Viewed September 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.