70
Views
12
CrossRef citations to date
0
Altmetric
Review

Understanding protein trafficking in plant cells through proteomics

, &
Pages 781-792 | Published online: 09 Jan 2014

References

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV. Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13(3), 659–666 (2001).
  • Collins NC, Thordal-Christensen H, Lipka V et al. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425(6961), 973–977 (2003).
  • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814), 796–815 (2000).
  • Goff SA, Ricke D, Lan TH et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565), 92–100 (2002).
  • Yu J, Hu S, Wang J et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565), 79–92 (2002).
  • Brunner AM, Busov VB, Strauss SH. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci. 9(1), 49–56 (2004).
  • Heazlewood JL, Millar AH. AMPDB: the Arabidopsis Mitochondrial Protein Database. Nucleic Acids Res. 33(Database issue), D605–D610 (2005).
  • Nair R, Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J. Mol. Biol. 348(1), 85–100 (2005).
  • van Wijk KJ. Plastid proteomics. Plant Physiol. Biochem. 42(12), 963–977 (2004).
  • Kleffmann T, Russenberger D, von Zychlinski A et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14(5), 354–362 (2004).
  • Peeters N, Small I. Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541(1–2), 54–63 (2001).
  • Biochemistry & Molecular Biology of Plants. Buchanan BB, Gruissem W, Jones RL (Eds), American Society of Plant Physiologists, MA, USA, (2000).
  • Sanderfoot AA, Raikhel NV. Vesicle trafficking. In: The Secretory System of Arabidopsis, in The Arabidopsis Book. Somerville CR, Meyerowitz EM (Eds), American Society of Plant Biologists, MD, USA, 24 (2003).
  • Jarvis P, Robinson C. Mechanisms of protein import and routing in chloroplasts. Curr. Biol. 14(24), R1064–R1077 (2004).
  • Jurgens G. Membrane trafficking in plants. Ann. Rev. Cell Dev. Biol. 20, 481–504 (2004).
  • Tian GW, Mohanty A, Chary SN et al. High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta. Plant Physiol. 135(1), 25–38 (2004).
  • Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP–ORF fusions. Plant J. 41(1), 162–74 (2005).
  • Kikuchi S, Satoh K, Nagata T et al. Collection, mapping, and annotation of over 28,000 cDNA clones from Japonica rice. Science 301(5631), 376–379 (2003).
  • Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1), 7–17 (2004).
  • Dreger M. Subcellular proteomics. Mass Spectrom. Rev. 22(1), 27–56 (2003).
  • Millar AH. Location, location, location: surveying the intracellular real estate through proteomics in plants. Funct. Plant Biol. 31, 563–571 (2004).
  • Warnock DE, Fahy E, Taylor SW. Identification of protein associations in organelles, using mass spectrometry-based proteomics. Mass Spectrom. Rev. 23(4), 259–280 (2004).
  • Tanaka N, Fujita M, Handa H et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol. Genet. Genomics 271(5), 566–576 (2004).
  • Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics 3(11), 1128–1134 (2004).
  • Keegstra K, Froehlich JE. Protein import into chloroplasts. Curr. Opin. Plant Biol. 2(6), 471–476 (1999).
  • Peltier JB, Friso G, Kalume DE et al. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12(3), 319–341 (2000).
  • Schubert M, Petersson UA, Haas BJ et al. Proteome map of the chloroplast lumen of Arabidopsis thaliana. J. Biol. Chem. 277(10), 8354–8365 (2002).
  • Ferro M, Salvi D, Brugiere S et al. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteomics 2(5), 325–345 (2003).
  • Gomez SM, Bil KY, Aguilera R et al. Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol. Cell. Proteomics 2(10), 1068–1085 (2003).
  • Sun Q, Emanuelsson O, van Wijk KJ. Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol. 135(2), 723–734 (2004).
  • Kubis S, Baldwin A, Patel R et al. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 15(8), 1859–1871 (2003).
  • Kubis S, Patel R, Combe J et al. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16(8), 2059–2077 (2004).
  • Friso G, Giacomelli L, Ytterberg AJ et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16(2), 478–499 (2004).
  • Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Moller IM. The plant mitochondrial proteome. Trends Plant Sci. 10(1), 36–43 (2005).
  • Wiedemann N, Frazier AE, Pfanner N. The protein import machinery of mitochondria. J. Biol. Chem. 279(15), 14473–14476 (2004).
  • Richly E, Chinnery PF, Leister D. Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends Genet. 19(7), 356–362 (2003).
  • Heazlewood JL, Tonti-Filippini JS, Gout AM et al. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16(1), 241–256 (2004).
  • Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci. 10(7), 316–323 (2005).
  • Vitale A, Raikhel NV. What do proteins need to reach different vacuoles? Trends Plant Sci. 4(4), 149–155 (1999).
  • Matsuoka K, Neuhaus J-M. Cis-elements of protein transport to the vacuoles. J. Exp. Bot. 50, 165–174 (1999).
  • Rojo E, Zouhar J, Carter C, Kovaleva V, Raikhel NV. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 100(12), 7389–7394 (2003).
  • Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R. Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography. Proteomics 4(2), 397–406 (2004).
  • Shimaoka T, Ohnishi M, Sazuka T et al. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol. 45(6), 672–683 (2004).
  • Carter C, Pan S, Zouhar J et al. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16(12), 3285–3303 (2004).
  • Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER-retention signal in Arabidopsis. Plant J. 33(3), 493–502 (2003).
  • Nair R, Carter P, Rost B. NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31(1), 397–399(2003).
  • Bae MS, Cho EJ, Choi EY, Park OK. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36(5), 652–663 (2003).
  • Calikowski TT, Meulia T, Meier I. A proteomic study of the Arabidopsis nuclear matrix. J. Cell Biochem. 90(2), 361–378 (2003).
  • Pendle AF, Clark GP, Boon R et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol Cell 16(1), 260–269 (2005).
  • Brown JW, Shaw PJ, Shaw P, Marshall DF. Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res. 33(Database issue), D633–D636 (2005).
  • Khan MM, Komatsu S. Rice proteomics: recent developments and analysis of nuclear proteins. Phytochemistry 65(12), 1671–1681 (2004).
  • Komatsu S, Kojima K, Suzuki K, Ozaki K, Higo K. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Res. 32(Database issue), D388–D392 (2004).
  • Komatsu S, Tanaka N. Rice proteome analysis: a step toward functional analysis of the rice genome. Proteomics 5(4), 938–949 (2005).
  • Chuong SD, Good AG, Taylor GJ et al. Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol. Cell. Proteomics 3(10), 970–983 (2004).
  • Chivasa S, Ndimba BK, Simon WJ et al. Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23(11), 1754–1765 (2002).
  • Boudart G, Jamet E, Rossignol M et al. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5(1), 212–221 (2005).
  • Slabas AR, Ndimba B, Simon WJ, Chivasa S. Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem. Soc. Trans. 32(Pt 3), 524–528 (2004).
  • Elortza F, Nuhse TS, Foster LJ et al. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteomics 2(12), 1261–1270 (2003).
  • Nuhse TS, Stensballe A, Jensen ON, Peck SC. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16(9), 2394–2405 (2004).
  • Marmagne A, Rouet MA, Ferro M et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol. Cell. Proteomics 3(7), 675–691 (2004).
  • Fukao Y, Hayashi M, Nishimura M. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol. 43(7), 689–696 (2002).
  • Prime TA, Sherrier DJ, Mahon P, Packman LC, Dupree P. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21(16), 3488–3499 (2000).
  • Hachey DL, Chaurand P. Proteomics in reproductive medicine: the technology for separation and identification of proteins. J. Reprod. Immunol. 63(1), 61–73 (2004).
  • Hegeman AD, Harms AC, Sussman MR, Bunner AE, Harper JF. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom. 15(5), 647–653 (2004).
  • Blagoev B, Kratchmarova I, Ong SE et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. 21(3), 315–318 (2003).
  • Andersen JS, Lam YW, Leung AK et al. Nucleolar proteome dynamics. Nature 433(7021), 77–83 (2005).
  • Pan S, Gu S, Bradbury EM, Chen X. Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging. Anal. Chem. 75(6), 1316–1324 (2003).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17(10), 994–999 (1999).
  • Zhu H, Pan S, Gu S, Bradbury EM, Chen X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16(22), 2115–2123 (2002).
  • Shiio Y, Donohoe S, Yi EC et al. Quantitative proteomic analysis of Myc oncoprotein function. Embo. J. 21(19), 5088–5096 (2002).
  • Prokai L, Zharikova AD, Stevens SM Jr. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J. Mass Spectrom. 40(2), 169–175 (2005).
  • Li C, Hong Y, Tan YX et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol. Cell. Proteomics 3(4), 399–409 (2004).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3(12), 1154–1169 (2004).
  • Rojo E, Martin R, Carter C et al. VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14(21), 1897–1906 (2004).
  • Chelius D, Zhang T, Wang G, Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal. Chem. 75(23), 6658–6665 (2003).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 77(7), 2187–2200 (2005).
  • Zhao Y, Dai X, Blackwell HE, Schreiber SL, Chory J. SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301(5636), 1107–1110 (2003).
  • Blackwell HE, Zhao Y. Chemical genetic approaches to plant biology. Plant Physiol. 133(2), 448–455 (2003).
  • Zouhar J, Hicks GR, Raikhel NV. Sorting inhibitors (sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc. Natl Acad. Sci. USA 101(25), 9497–9501 (2004).
  • Surpin M, Rojas-Pierce M, Carter C et al. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc. Natl Acad. Sci. USA 102(13), 4902–4907 (2005).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003).
  • Andersen JS, Svensson B, Roepstorff P. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry. Nature Biotechnol. 14(4), 449–457 (1996).
  • Zabrouskov V, Giacomelli L, Van Wijk KJ, McLafferty FW. A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry. Mol. Cell. Proteomics 2(12), 1253–1260 (2003).
  • Ge Y, Lawhorn BG, ElNaggar M et al. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 124(4), 672–678 (2002).
  • Nielsen ML, Savitski MM, Zubarev RA. Improving protein identification using complementary fragmentation techniques in Fourier transform mass spectrometry. Mol. Cell. Proteomics 4(8), 1180–1188 (2005).
  • Kim JY, Rim Y, Wang J, Jackson D. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev. 19(7), 788–793 (2005).
  • Breuker K, Oh H, Lin C, Carpenter BK, McLafferty FW. Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl Acad. Sci. USA 101(39), 14011–14016 (2004).
  • McFarland MA, Chalmers MJ, Quinn JP, Hendrickson CL, Marshall AG. Evaluation and optimization of electron capture dissociation efficiency in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 16(7), 1060–1066 (2005).
  • Wall DB, Kachman MT, Gong S et al. Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal. Chem. 72(6), 1099–1111 (2000).
  • Borner GH, Lilley KS, Stevens TJ, Dupree P. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol. 132(2), 568–577 (2003).
  • Wiwatwattana N, Kumar A. Organelle DB: a cross-species database of protein localization and function. Nucleic Acids Res. 33(Database issue), D598–D604 (2005).

Websites

  • The Plastid Proteome Database http://ppdb.tc.cornell.edu (Viewed September 2005)
  • Arabidopsis Mitochondrial Protein Database www.ampdb.bcs.uwa.edu.au (Viewed September 2005)
  • Arabidopsis Nucleolar Protein Database http://bioinf.scri.sari.ac.uk/cgi-bin/ atnopdb/home (Viewed September 2005)
  • Rice Proteome Database http://gene64.dna.affrc.go.jp/RPD/ main_en.html (Viewed September 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.