408
Views
94
CrossRef citations to date
0
Altmetric
Reviews

Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation

References

  • Fry BG, Roelants K, Champagne DE, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 2009;10:483-511
  • Fry BG, Casewell NR, Wüster W, et al. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 2012;60:434-48
  • Vonk FJ, Admiraal JF, Jackson K, et al. Evolutionary origin and development of snake fangs. Nature 2008;454:630-3
  • Fry BG, Wüster W, Ramjan SFR, et al. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom 2003;17:2047-62
  • Ching AT, Rocha MM, Paes Leme AF, et al. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett 2006;580:4417-22
  • Fry BG, Scheib H, van der Weerd L, et al. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 2008;7:215-46
  • Peichoto ME, Tavares FL, Santoro ML, et al. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles. Comp Biochem Physiol Part D Genomics Proteomics 2012;7:361-9
  • Ching AT, Paes Leme AF, Zelanis A, et al. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res 2012;11:1152-62
  • Fry BG, Undheim EAB, Ali SA, et al. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Mol Cell Proteomics 2013;12:1881-99
  • Fry BG, Vidal N, Norman JA, et al. Early evolution of the venom system in lizards and snakes. Nature 2006;439:584-8
  • Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biologies 2005;328:1000-8
  • Fry BG, Winter K, Norman JA, et al. Functional and structural diversification of the Anguimorpha lizard venom system. Mol Cell Proteomics 2010;9:2369-90
  • Casewell NR, Wüster W, Vonk FJ, et al. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 2013;28:219-29
  • Williams DJ, Gutiérrez JM, Calvete JJ, et al. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 2011;74:1735-67
  • Warrell DA, Gutiérrez JM, Calvete JJ, et al. New approaches and technologies of venomics to meet the challenge of human envenoming by snake-bites in India. Indian J Med Res 2013;138:38-59
  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon 2013;75:44-62
  • ‘Snake venomics’ in PubMed. Available from: www.ncbi.nlm.nih.gov/pubmed/?term=snake+venomics
  • Vonk FJ, Casewell NR, Henkel CV, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA 2013;110:20651-6
  • Castoe TA, de Koning AP, Hall KT, et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA 2013;110:20645-50
  • Genome 10K Project. Available from: http://genome10k.soe.ucsc.edu
  • McCleary RJR, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon 2013;62:56-74
  • Diochot S, Baron A, Salinas M, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012;490:552-5
  • Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom 2007;42:1405-14
  • Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Exp Rev Proteomics 2011;8:739-58
  • Pla D, Gutiérrez JM, Calvete JJ. Second generation antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon 2012;60:688-99
  • Fry BG, Wüster W, Kini RM, et al. Molecular evolution and phylogeny of elapid snake venom three finger toxins. J Mol Evol 2003;57:110-29
  • Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 2008;9:938-50
  • Fry BG. From genome to ‘venome’: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 2005;15:403-20
  • Fry BG, Scheib H, Junqueira de Azevedo ILM, et al. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon 2012;59:696-708
  • Calvete JJ, Pérez A, Lomonte B, et al. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest neartic rattlesnake venom. Evolutionary clues for generating a pan-specific antivenom against crotalid type II venoms. J Proteome Res 2012;11:1382-90
  • OmPraba G, Chapeaurouge A, Doley R, et al. Identification of a novel family of snake venom proteins veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res 2010;9:1882-93
  • Durban J, Juárez P, Angulo Y, et al. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics 2012;12:259
  • Margres MJ, McGivern JJ, Wray KP, et al. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics 2014;96:145-58
  • Calvete JJ, Ghezellou P, Paiva O, et al. Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrial Toxicocalamus longissimus and marine Hydrophis cyanocinctus. J Proteomics 2012;75:4091-101
  • Smith LM, Kelleher NL; The Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat Methods 2013;10:186-7
  • Serrano SMT, Shannon JD, Wang D, et al. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics 2005;5:501-10
  • Fox JW, Serrano SMT. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics 2008;8:909-20
  • Georgieva D, Risch M, Kardas A, et al. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Proteome Res 2008;7:866-86
  • Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Exp Rev Proteomics 2008;5:787-95
  • Mackessy SP. The field of reptile toxinology: snakes, lizards and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2010. p. 3-23
  • Birrell GW, Earl STH, Masci PP, et al. Molecular Diversity in Venom from the Australian brown snake, Pseudonaja textilis. Mol Cell Proteomics 2006;5:379-89
  • Birrell GW, Earl STH, Wallis TP, et al. The diversity of bioactive proteins in Australian snake venoms. Mol Cell Proteomics 2007;6:973-86
  • Gibbs HL, Sanz L, Sovic MG, et al. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (Sistrurus sp.). PLoS One 2013;8:e67220
  • Escoubas P, Quinton L, Nicholson GM. Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 2008;43:279-95
  • Purvine S, Eppel JT, Yi EC, et al. Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 2003;3:847-50
  • Silva JC, Gorenstein MV, Li GZ, et al. Absolute quantification of proteins by LC-MSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 2006;5:144-56
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012;11:O111.016717
  • Liu Y, Hüttenhain R, Collins B, et al. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 2013;13:811-25
  • Rokyta DR, Lemmon AR, Margres MJ, et al. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 2012;13:312
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012;404:939-65
  • Brun V, Masselon C, Garin J, et al. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 2009;72:740-9
  • Villanueva J, Carrascal M, Abian J. Isotope dilution mass spectrometry for absolute quantification in proteomics: concepts and strategies. J Proteomics 2014;96:184-99
  • Ohno M, Ménez R, Ogawa T. Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol 1998;59:307-64
  • Casewell NR, Huttley GA, Wüster W. Dynamic evolution of venom proteins in squamate reptiles. Nat Commun 2012;3:1066
  • Rajon E, Masel J. Compensatory evolution and the origins of innovations. Genetics 2013;193:1209-20
  • Rokyta DR, Wray KP, Lemmon AR, et al. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon 2011;57:657-71
  • Ho PL, Soares MB, Yamane T, et al. Reverse biology applied to Micrurus corallinus, a south american coral snake. J Toxicol Toxin Rev 1995;14:327-37
  • Junqueira de Azevedo ILM, Diniz MRV, Ho PL. Venom gland transcriptomic analysis. In: de Lima ME, Pimenta AMC, Martin-Euclaire MF, et al. editors. Animal toxins: state of the art. Perspectives in health and biotechnology. Editora UFMG; Belo Horizonte, Brazil: 2009. p. 693-713
  • Margres MJ, Aronow K, Loyacano J, et al. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms. BMC Genomics 2013;14:531
  • Wagstaff SC, Sanz L, Juárez P, et al. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J Proteomics 2009;71:609-23
  • Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 2008;275:3016-30
  • Trummal K, Tõnismägi K, Siigur E, et al. A novel metalloprotease from Vipera lebetina venom induces human endothelial cell apoptosis. Toxicon 2005;46:46-61
  • Takeya H, Nishida S, Miyata T, et al. Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem 1992;267:14109-17
  • Corrêa-Netto C, Junqueira-de-Azevedo ILM, Silva DA, et al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteomics 2011;74:1795-809
  • Rodrigues RS, Boldrini-França J, Fonseca FPP, et al. Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J Proteomics 2012;75:2707-20
  • Conlon JM, Attoub S, Arafat H, et al. Cytotoxic activities of [Ser49]phospholipase A2 from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus. Toxicon 2013;71:96-104
  • Fry BG, Wickramaratna JC, Hodgson WC, et al. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acantophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun Mass Spectrom 2002;16:600-8
  • Hodgson WC, Wickramaratna JC. Snake venoms and their toxins: an Australian perspective. Toxicon 2006;48:931-40
  • Rey-Suárez P, Núñez V, Gutiérrez JM, et al. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics 2011;75:655-67
  • Fernández J, Alape-Girón A, Angulo Y, et al. Venomic and antivenomic analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J Proteome Res 2011;10:1816-27
  • Petras D, Sanz L, Segura A, et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 2011;10:1266-80
  • Bénard-Valle M, Carbajal-Saucedo A, de Roodt A. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model. Toxicon 2014;77:6-15
  • Malih I, Rusdi M, Rusmili A, et al. Proteomic analysis of Moroccan Cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics 2014;96:240-52
  • Calvete JJ, Sanz L, Pérez A, et al. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics 2011;74:510-27
  • Calvete JJ, Sanz L, Cid P, et al. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res 2010;9:528-44
  • Wüster W, Ferguson JE, Quijada-Mascareñas JA, et al. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: viperidae: Crotalus durissus). Mol Ecol 2005;14:1095-108
  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 2004;4:59-77
  • Renuse S, Chaerkady R, Pandey A. Proteogenomics. Proteomics 2011;11:620-30
  • Venter E, Smith RD, Payne SH. Proteogenomic analysis of bacteria and archaea: a 46 organism case study. PLoS One 2011;6:e27587
  • Armengaud J, Hartmann EM, Bland C. Proteogenomics for environmental microbiology. Proteomics 2013;13:2731-42
  • Kasturiratne A, Wickremasinghe AR, de Silva N, et al. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Negl Trop Dis 2008;5:e218
  • Harrison RA, Hargreaves A, Wagstaff SC, et al. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis 2009;3:e569
  • Gutiérrez JM, Williams D, Fan HW, et al. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon 2010;56:1223-35
  • Gutiérrez JM. Snakebite envenoming: a public health perspective. In: Maddock J, editor. Public health-methodology, environmental and systems issues. InTech; Rojeka, Croatia: 2012. p. 131-62
  • WHO: neglected tropical diseases. Available from: www.who.int/neglected_diseases/diseases/snakebites/en/
  • Calmette A. L’immunisation artificielle des animaux contre le venin des serpents, et la thérapeutic expérimentale des morsures venimeuses. Comptes Rendus de la Société de Biologie 1894;46:120-4
  • Calmette A. Contribution à l’étude du venin des serpents. Immunisation des animaux et traitement de l’envenimation. Ann Inst Pasteur (Paris) 1984;8:275-91
  • Hawgood BJ. Doctor Albert Calmette 1863-1933: founder of antivenomous serotherapy and of antituberculous BCG vaccination. Toxicon 1999;37:1241-58
  • Lalloo DG, Theakston RDG. Snake antivenoms. J Toxicol Clin Toxicol 2003;41:277-90
  • Phisalix C. Bertrand, G. Sur la propriété antitoxique du sang des animaux vaccinée contre le venin de vipére. Comptes Rendus de la Société de Biologie 1894;46:111-13
  • Phisalix C, Bertrand G. Propriétés antitoxique du sang des animaux vaccineé contre le venin de vipère. Contribution à l’étude du mécanisme de la vaccination contre ce venin. Arch Physiol 1894;6:611-19
  • Gutiérrez JM, León G, Burnouf T. Antivenoms for the treatment of snakebite envenomings: the road ahead. Biologicals 2011;39:129-42
  • Gutiérrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon 2012;60:676-87
  • Gutiérrez JM, Lomonte B, León G, et al. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenomings. J Proteomics 2009;72:165-82
  • Chippaux J-P, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon 1991;29:1279-303
  • Gutiérrez JM, Solano G, Pla D, et al. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. Toxicon 2013;69:168-719
  • World Health Organization. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. WHO; Geneva, Switzerland: 2010
  • WHO: guidelines for the production, control and regulation of snake antivenom immunoglobulins. Available from: www.who.int/bloodproducts/snakeantivenoms
  • Gutiérrez JM, Warrell DA, Williams DJ, et al. The need for full integration of snake-bite envenoming within a global strategy to combat the Neglected Tropical Diseases: the way forward. PLoS Negl Trop Dis 2013;7:e2162
  • The global snakebite initiative. Available from: www.snakebiteinitiative.org/
  • Lomonte B, Escolano J, Fernández J, et al. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res 2008;7:2445-57
  • Calvete JJ, Sanz L, Angulo Y, et al. Venoms, venomics, antivenomics. FEBS Lett 2009;583:1736-43
  • Gutiérrez JM, Lomonte B, Sanz L, et al. Immunological profile of antivenoms: “Antivenomics” and neutralization assays. In: Gopalakrishnakone P, editor. Handbook of toxinology. Evolution of venom glands. Springer Reference Press, New York, NY, USA; 2014; In press
  • Fahmi L, Makran B, Pla D, et al. Venomics and antivenomics profiles of North African Cerastes cerastes and C. vipera populations reveals a potentially important therapeutic weakness. J Proteomics 2012;75:2442-53
  • Madrigal M, Sanz L, Flores-Diaz M, et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of L. stenophrys and comparative proteomics of the venoms of adult L. melanocephala and L. acrochorda. J Proteomics 2012;77:280-97
  • Pla D, Sanz L, Molina-Sánchez P, et al. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. J Proteomics 2013;89:112-23
  • Villalta M, Pla D, Yang SL, et al. Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: keys to understand the variable immune response in horses. J Proteomics 2012;75:5628-45
  • Dobzhansky T. Nothing in biology makes sense except in the light of evolution. Am Biol Teacher 1973;35:125-9
  • Chetty N, Du A, Hodgson WC, et al. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms. Toxicon 2004;44:193-200
  • Alföldi J, di Palma F, Grabherr M, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011;477:587-91
  • Eckalbar WL, Hutchins ED, Markov GJ, et al. Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 2013;14:49
  • St John JA, Braun EL, Isberg SR, et al. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 2012;13:415
  • Kusumi K, May CM, Eckalbar WL. A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr Opin Genet Dev 2013;23:491-7
  • Vidal N, Hedges SB. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C R Biol 2009;332:129-39
  • Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 2013;13:93
  • Ohno M, Ogawa T, Oda-Ueda N, et al. Accelerated and regional evolution of snake venom-gland isozyme. In: Menez A, editor. Perspectives in molecular toxinology. Wiley & Sons; New York, NY, USA: 2002. p. 387-400
  • Durban J, Pérez A, Sanz L, et al. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013;14:234
  • Calvete JJ. Updating JPROT’s publication standards for large-scale proteomic studies: towards hypothesis-driven interpretation of predictive biological models. J Proteomics 2012;76:1-2
  • ‘Antivenomics’ in PubMed. Available from: www.ncbi.nlm.nih.gov/pubmed/?term=antivenomics
  • Wikipedia. Available from: http://it.wikipedia.org/wiki/File:Hornviper_Cerastes_cerastes.jpg

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.