382
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Proteomes of pathogenic Escherichia coli/Shigella group surveyed in their host environments

, , &

References

  • Touchon M, Hoede C, Tenaillon O, et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009;5(1):e1000344
  • Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2(2):123-40
  • Zhang Y, Lin K. A phylogenomic analysis of Escherichia coli/ Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation. BMC Evol Biol 2012;12:174
  • Rajagopala SV, Sikorski P, Kumar A, et al. The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 2014;32(3):285-90
  • Monk JM, Charusanti P, Aziz RK, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA 2013;110(50):20338-43
  • Kuntumalla S, Zhang Q, Braisted JC, et al. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol 2011;11:147
  • Pieper R, Zhang Q, Clark DJ, et al. proteomic view of interactions of shiga toxin-producing with the intestinal environment in gnotobiotic piglets. PLoS One 2013;8(6):e66462
  • Evans DF, Pye G, Bramley R, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035-41
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003;361(9356):512-19
  • Lu L, Walker WA. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 2001;73(6):1124S-30S
  • Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008;21(1):134-56
  • Wei J, Goldberg MB, Burland V, et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a Strain 2457T. Infect Immun 2003;71(5):2775-86
  • Lan R, Reeves PR. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect 2002;4(11):1125-32
  • Liao X, Ying T, Wang H, et al. A two-dimensional proteome map of Shigella flexneri. Electrophoresis 2003;24(16):2864-82
  • Wei C, Yang J, Zhu J, et al. comprehensive proteomic analysis of Shigella flexneri 2a membrane proteins. J Proteome Res 2006;5(8):1860-5
  • Zhu L, Liu X-K, Zhao G, et al. Dynamic proteome changes of Shigella flexneri 2a during transition from exponential growth to stationary phase. Genomics Proteomics Bioinformatics 2007;5(2):111-20
  • Zhu L, Zhao G, Stein R, et al. The Proteome of Shigella flexneri 2a 2457T grown at 30 and 37 °C. Mol Cell Proteomics 2010;9(6):1209-20
  • Niu C, Shang N, Liao X, et al. Analysis of soluble protein complexes in Shigella flexneri reveals the influence of temperature on the amount of lipopolysaccharide. Mol Cell Proteomics 2013;12(5):1250-8
  • Pieper R, Fisher CR, Suh M-J, et al. Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun 2013;81(12):4635-48
  • Yang F, Yang J, Zhang X, et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 2005;33(19):6445-58
  • Kuntumalla S, Braisted JC, Huang ST, et al. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome. Proteome Sci 2009;7:22
  • Pieper R, Zhang Q, Parmar PP, et al. The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics 2009;9(22):5029-45
  • Naylor SW, Low JC, Besser TE, et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 2003;71(3):1505-12
  • Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 1998;11(3):450-79
  • Newton HJ, Sloan J, Bulach DM, et al. Shiga toxin-producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg Infect Dis 2009;15(3):372-80
  • Perna NT, Plunkett G 3rd, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001;409(6819):529-33
  • Li M, Rosenshine I, Tung SL, et al. Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Appl Environ Microbiol 2004;70(9):5274-82
  • Grys TE, Siegel MB, Lathem WW, Welch RA. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect Immun 2005;73(3):1295-303
  • Tobe T, Beatson SA, Taniguchi H, et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 2006;103(40):14941-6
  • Pieper R, Zhang Q, Clark DJ, et al. Characterizing the Escherichia coli O157:H7 proteome including protein associations with higher order assemblies. PLoS One 2011;6(11):e26554
  • Vega NM, Allison KR, Khalil AS, Collins JJ. Signaling-mediated bacterial persister formation. Nat Chem Biol 2012;8(5):431-3
  • Valgepea K, Adamberg K, Nahku R, et al. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 2010;4:166
  • Asakura H, Panutdaporn N, Kawamoto K, et al. Proteomic characterization of enterohemorrhagic escherichia coli O157:H7 in the oxidation-induced viable but non-culturable state. Microbiol Immunol 2007;51(9):875-81
  • Cash P. Proteomic analysis of uropathogenic Escherichia coli. Expert Rev Proteomics 2014;11(1):43-58
  • Garmendia J, Frankel G, Crepin VF. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 2005;73(5):2573-258
  • Ogawa M, Handa Y, Ashida H, et al. The versatility of Shigella effectors. Nat Rev Microbiol 2008;6(1):11-16
  • Braisted JC, Kuntumalla S, Vogel C, et al. The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics 2008;9:529
  • Ruiz-Perez F, Wahid R, Faherty CS, et al. Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci USA 2011;108(31):12881-6
  • Schuch R, Sandlin RC, Maurelli AT. A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol Microbiol 1999;34(4):675-89
  • Reeves SA, Torres AG, Payne SM. TonB is required for intracellular growth and virulence of Shigella dysenteriae. Infect Immun 2000;68(11):6329-36
  • Fouts DE, Pieper R, Szpakowski S, et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 2012;10:174
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57
  • Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 2008;21(1):26-59
  • Alteri CJ, Smith SN, Mobley HL. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 2009;5(5):e1000448
  • Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 2001;69(10):6179-85
  • Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004;279(8):6613-19
  • Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006;18(1):24-30
  • Hiemstra PS, Fernie-King BA, McMichael J, et al. Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des 2004;10(23):2891-905
  • Rampoldi L, Scolari F, Amoroso A, et al. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 2011;80(4):338-47
  • Ayabe T, Ashida T, Kohgo Y, Kono T. The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol 2004;12(8):394-8
  • Weichhart T, Haidinger M, Horl WH, Saemann MD. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 2008 38(Suppl 2):29-38
  • Ehrchen JM, Sunderkotter C, Foell D, et al. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009;86(3):557-66
  • Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013;10(6):352-61
  • Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313(5790):1126-30
  • Lane MC, Mobley HL. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007;72(1):19-25
  • Hagan EC, Mobley HL. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 2007;75(8):3941-9
  • Guttman JA, Li Y, Wickham ME, et al. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol 2006;8(4):634-45
  • Howe KL, Reardon C, Wang A, et al. Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am J Pathol 2005;167(6):1587-97
  • Ashida H, Ogawa M, Kim M, et al. Shigella deploy multiple countermeasures against host innate immune responses. Curr Opin Microbiol 2011;14(1):16-23
  • Phalipon A, Sansonetti PJ. Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 2007;85(2):119-29
  • Schmutz C, Ahrne E, Kasper CA, et al. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics 2013;12(10):2952-68
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41(Database issue):D808-15
  • Arbibe L, Kim DW, Batsche E, et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 2007;8(1):47-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.