602
Views
15
CrossRef citations to date
0
Altmetric
Review

The power of the yeast two-hybrid system in the identification of novel drug targets: building and modulating PPP1 interactomes

, , &

References

  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989;340:245-6
  • Stynen B, Tournu H, Tavernier J, Van Dijck P. Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. MMBR 2012;76:331-82
  • Bruckner A, Polge C, Lentze N, et al. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009;10:2763-88
  • Auerbach D, Stagljar I. Yeast Two-Hybrid Protein–Protein Interaction Networks. In Proteomics and Protein–Protein Interactions: Biology, Chemistry, Bioinformatics, and Drug Design. Springer; 2005
  • Roberts GG3rd, Parrish JR, Mangiola BA, Finley RLJr. High-throughput yeast two-hybrid screening. Methods Mol Biol 2012;812:39-61
  • Rezwan M, Auerbach D. Yeast “N”-hybrid systems for protein-protein and drug-protein interaction discovery. Methods 2012;57:423-9
  • Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012;33:109-18
  • Koegl M, Uetz P. Improving yeast two-hybrid screening systems. Brief Funct Genomic Proteomic 2007;6:302-12
  • Velasco-Garcia R, Vargas-Martinez R. The study of protein-protein interactions in bacteria. Can J Microbiol 2012;58:1241-57
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291:1304-51
  • Stumpf MP, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008;105:6959-64
  • Finley RLJr, Brent R. Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc Natl Acad Sci USA 1994;91:12980-4
  • Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623-7
  • Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001;98:4569-74
  • Giot L, Bader JS, Brouwer C, et al. A protein interaction map of Drosophila melanogaster. Science 2003;302:1727-36
  • Rain JC, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori. Nature 2001;409:211-15
  • Simonis N, Rual JF, Carvunis AR, et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 2009;6:47-54
  • Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005;122:957-68
  • Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005;437:1173-8
  • Futschik ME, Chaurasia G, Herzel H. Comparison of human protein-protein interaction maps. Bioinformatics 2007;23:605-11
  • Davy A, Bello P, Thierry-Mieg N, et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2001;2:821-8
  • Colland F, Jacq X, Trouplin V, et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004;14:1324-32
  • WHO. Antimicrobial resistance: global report on surveillance. 2014
  • Das S, Kalpana GV. Reverse two-hybrid screening to analyze protein-protein interaction of HIV-1 viral and cellular proteins. Methods Mol Biol 2009;485:271-93
  • Parrish JR, Yu J, Liu G, et al. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 2007;8:R130
  • To A, Bai Y, Shen A, et al. Yeast two hybrid analyses reveal novel binary interactions between human cytomegalovirus-encoded virion proteins. PLoS One 2011;6:e17796
  • Dyer MD, Neff C, Dufford M, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One 2010;5:e12089
  • Li H, Dou W, Padikkala E, Mani S. Reverse yeast two-hybrid system to identify mammalian nuclear receptor residues that interact with ligands and/or antagonists. J Vis Exp 2013;e51085
  • Katsogiannou M, Andrieu C, Baylot V, et al. The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets. Mol Cell Proteomics 2014;13(12):3585-601
  • Cohen PT. Protein phosphatase 1 – targeted in many directions. J Cell Sci 2002;115:241-56
  • da Cruz e Silva EF, Fox CA, Ouimet CC, et al. Differential expression of protein phosphatase 1 isoforms in mammalian brain. J Neurosci 1995;15:3375-89
  • Takizawa N, Mizuno Y, Ito Y, Kikuchi K. Tissue distribution of isoforms of type-1 protein phosphatase PP1 in mouse tissues and its diabetic alterations. J Biochem 1994;116:411-15
  • Shima H, Hatano Y, Chun YS, et al. Identification of PP1 catalytic subunit isotypes PP1 gamma 1, PP1 delta and PP1 alpha in various rat tissues. Biochem Biophys Res Commun 1993;192:1289-96
  • Fardilha M, Ferreira M, Pelech S, et al. “Omics” of human sperm: profiling protein phosphatases. OMICS 2013;17:460-72
  • Andreassen PR, Lacroix FB, Villa-Moruzzi E, Margolis RL. Differential subcellular localization of protein phosphatase-1 alpha, gamma1, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol 1998;141:1207-15
  • Trinkle-Mulcahy L, Sleeman JE, Lamond AI. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci 2001;114:4219-28
  • Korrodi-Gregorio L, Esteves SL, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014;164:366-91
  • Ouimet CC, da Cruz e Silva EF, Greengard P. The alpha and gamma 1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc Natl Acad Sci USA 1995;92:3396-400
  • Bordelon JR, Smith Y, Nairn AC, et al. Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate prefrontal cortex. Cereb Cortex 2005;15:1928-37
  • Chakrabarti R, Kline D, Lu J, et al. Analysis of Ppp1cc-null mice suggests a role for PP1gamma2 in sperm morphogenesis. Biol Reprod 2007;76:992-1001
  • Sinha N, Puri P, Nairn AC, Vijayaraghavan S. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice. Biol Reprod 2013;89:128
  • Varmuza S, Jurisicova A, Okano K, et al. Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene. Dev Biol 1999;205:98-110
  • Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 2010;35:450-8
  • Fardilha M, Esteves SL, Korrodi-Gregorio L, et al. The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. Curr Med Chem 2010;17:3996-4017
  • Veres DV, Gyurko DM, Thaler B, et al. ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis. Nucleic Acids Res 2015;43:D485-93
  • Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2009;2:re9
  • Meiselbach H, Sticht H, Enz R. Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem Biol 2006;13:49-59
  • Heroes E, Lesage B, Gornemann J, et al. The PP1 binding code: a molecular-lego strategy that governs specificity. Febs j 2013;280:584-95
  • Hendrickx A, Beullens M, Ceulemans H, et al. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 2009;16:365-71
  • Terrak M, Kerff F, Langsetmo K, et al. Structural basis of protein phosphatase 1 regulation. Nature 2004;429:780-4
  • Bennett D, Lyulcheva E, Alphey L, Hawcroft G. Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosophila. J Mol Biol 2006;364:196-212
  • Esteves SL, Korrodi-Gregorio L, Cotrim CZ, et al. Protein phosphatase 1gamma isoforms linked interactions in the brain. J Mol Neurosci 2013;50:179-97
  • Esteves SL, Domingues SC, da Cruz e Silva OA, et al. Protein phosphatase 1alpha interacting proteins in the human brain. OMICS 2012;16:3-17
  • Santos M, Rebelo S, Van Kleeff PJ, et al. The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate. PLoS One 2013;8:e76788
  • Fardilha M, Esteves SL, Korrodi-Gregorio L, et al. Identification of the human testis protein phosphatase 1 interactome. Biochem Pharmacol 2011;82:1403-15
  • Korrodi-Gregorio L, Vieira SI, Esteves SL, et al. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network. Biol Open 2013;2:453-65
  • Freitas MJ, Korrodi-Gregorio L, Morais-Santos F, et al. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa. OMICS 2014;18:242-53
  • Hrabchak C, Varmuza S. Identification of the spermatogenic zip protein Spz1 as a putative protein phosphatase-1 (PP1) regulatory protein that specifically binds the PP1cgamma2 splice variant in mouse testis. J Biol Chem 2004;279:37079-86
  • Hrabchak C, Henderson H, Varmuza S. A testis specific isoform of endophilin B1, endophilin B1t, interacts specifically with protein phosphatase-1c gamma2 in mouse testis and is abnormally expressed in PP1c gamma null mice. Biochemistry 2007;46:4635-44
  • Chen CY, Lai NS, Yang JJ, et al. FLJ23654 encodes a heart protein phosphatase 1-binding protein (Hepp1). Biochem Biophys Res Commun 2010;391:698-702
  • Skinner JA, Saltiel AR. Cloning and identification of MYPT3: a prenylatable myosin targeting subunit of protein phosphatase 1. Biochem J 2001;356:257-67
  • Ayllon V, Cayla X, Garcia A, et al. Bcl-2 targets protein phosphatase 1 alpha to Bad. J Immunol 2001;166:7345-52
  • Llorian M, Beullens M, Andres I, et al. SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1. Biochem J 2004;378:229-38
  • Gagnon KB, England R, Diehl L, Delpire E. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol 2007;292:C1809-15
  • Lee KY, Bae JS, Yoon S, Hwang DS. Dephosphorylation of Orc2 by protein phosphatase 1 promotes the binding of the origin recognition complex to chromatin. Biochem Biophys Res Commun 2014;448:385-9
  • Lesage B, Beullens M, Pedelini L, et al. A complex of catalytically inactive protein phosphatase-1 sandwiched between Sds22 and inhibitor-3. Biochemistry 2007;46:8909-19
  • Kao SC, Chen CY, Wang SL, et al. Identification of phostensin, a PP1 F-actin cytoskeleton targeting subunit. Biochem Biophys Res Commun 2007;356:594-8
  • Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006;6:909-23
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8
  • Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006;125:801-14
  • Li J, Zhang S, Gao L, et al. A cell-based high-throughput assay for the screening of small-molecule inhibitors of p53-MDM2 interaction. J Biomol Screen 2011;16:450-6
  • Ruffner H, Bauer A, Bouwmeester T. Human protein-protein interaction networks and the value for drug discovery. Drug Discov Today 2007;12:709-16
  • Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005;307:935-9
  • Brush MH, Guardiola A, Connor JH, et al. Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 2004;279:7685-91
  • Vijayaraghavan S, Stephens DT, Trautman K, et al. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 1996;54:709-18
  • Fardilha M, Esteves SL, Korrodi-Gregorio L, et al. Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 2011;17:466-77
  • Valkov E, Sharpe T, Marsh M, et al. Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem 2012;317:145-79.10.1007/128_2011_265
  • Chatterjee J, Beullens M, Sukackaite R, et al. Development of a peptide that selectively activates protein phosphatase-1 in living cells. Angew Chem Int Ed Engl 2012;51:10054-9
  • Jones S, Lukanowska M, Suhorutsenko J, et al. Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Hum Reprod 2013;28:1874-89
  • Hirst M, Ho C, Sabourin L, et al. A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci USA 2001;98:8726-31
  • Joshi PB, Hirst M, Malcolm T, et al. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques 2007;42:635-44
  • Serebriiskii I, Khazak V, Golemis EA. A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem 1999;274:17080-7
  • Serebriiskii IG, Mitina O, Pugacheva EN, et al. Detection of peptides, proteins, and drugs that selectively interact with protein targets. Genome Res 2002;12:1785-91
  • Spektor TM, Rice JC. Identification and characterization of posttranslational modification-specific binding proteins in vivo by mammalian tethered catalysis. Proc Natl Acad Sci USA 2009;106:14808-13
  • Guo D, Hazbun TR, Xu XJ, et al. A tethered catalysis, two-hybrid system to identify protein-protein interactions requiring post-translational modifications. Nat Biotechnol 2004;22:888-92
  • Ehrhard KN, Jacoby JJ, Fu XY, et al. Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat Biotechnol 2000;18:1075-9
  • Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 1997;17:3094-102
  • Schonhofer-Merl S, Torres-Ruiz RA. The Sos-recruitment system as a tool to analyze cellular localization of plant proteins: membrane localization of Arabidopsis thaliana PEPINO/PASTICCINO2. Mol Genet Genomics 2010;283:439-49
  • Jaaro H, Levy Z, Fainzilber M. A genome wide screening approach for membrane-targeted proteins. Mol Cell Proteomics 2005;4:328-33
  • Broder YC, Katz S, Aronheim A. The ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol 1998;8:1121-4
  • Hubsman M, Yudkovsky G, Aronheim A. A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res 2001;29:E18
  • Maroun M, Aronheim A. A novel in vivo assay for the analysis of protein-protein interaction. Nucleic Acids Res 1999;27:e4
  • Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 1994;91:10340-4
  • Fetchko M, Stagljar I. Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods 2004;32:349-62
  • Miller JP, Lo RS, Ben-Hur A, et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA 2005;102:12123-8
  • Reichel C, Johnsson N. The split-ubiquitin sensor: measuring interactions and conformational alterations of proteins in vivo. Methods Enzymol 2005;399:757-76
  • Urech DM, Lichtlen P, Barberis A. Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochim Biophys Acta 2003;1622:117-27
  • Marsolier MC, Prioleau MN, Sentenac A. A RNA polymerase III-based two-hybrid system to study RNA polymerase II transcriptional regulators. J Mol Biol 1997;268:243-9
  • Wilson TE, Fahrner TJ, Johnston M, Milbrandt J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 1991;252:1296-300
  • Feng SY, Ota K, Ito T. A yeast one-hybrid system to screen for methylated DNA-binding proteins. Nucleic Acids Res 2010;38:e189
  • Kim JY, Park OG, Lee JW, Lee YC. One-plus two-hybrid system, a novel yeast genetic selection for specific missense mutations disrupting protein/protein interactions. Mol Cell Proteomics 2007;6:1727-40
  • Lefurgy S, Cornish V. Finding Cinderella after the ball: a three-hybrid approach to drug target identification. Chem Biol 2004;11:151-3
  • Hook B, Bernstein D, Zhang B, Wickens M. RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 2005;11:227-33
  • Eyckerman S, Lemmens I, Catteeuw D, et al. Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat Methods 2005;2:427-33
  • Tavernier J, Eyckerman S, Lemmens I, et al. MAPPIT: a cytokine receptor-based two-hybrid method in mammalian cells. Clin Exp Allergy 2002;32:1397-404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.