273
Views
60
CrossRef citations to date
0
Altmetric
Original Research

Constructing comprehensive venom proteome reference maps for integrative venomics

, , &

References

  • Casewell NR, Wüster W, Vonk FJ, et al. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 2013;28:219-29
  • Fry BG, Roelants K, Champagne DE, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 2009;10:483-511
  • Serrano SMT, Shannon JD, Wang D, et al. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics 2005;5:501-10
  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon 2013;75:44-62
  • Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon 1991;29:1279-303
  • Vonk FJ, Jackson K, Doley R, et al. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays 2011;33:269-79
  • Casewell NR, Wagstaff SC, Wüster W, et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci USA 2014;111:9205-10
  • Reyes-Velasco J, Card DC, Andrew AL, et al. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol 2015;32:173-83
  • Williams DJ, Gutiérrez JM, Calvete JJ, et al. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 2011;74:1735-67
  • Calvete JJ, Sanz L, Pla D, et al. Omics meets biology: application to the design and preclinical assessment of antivenoms. Toxins 2014;6:3388-405
  • Petras D, Heiss P, Süssmuth R, Calvete JJ. Venom proteomics of Indonesian king cobra, Ophiophagus hannah: integrating top-down and bottom-up approaches. J Proteome Res 2015;14(6):2539-56
  • Vonk FJ, Casewell NR, Henkel CV, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA 2013;110:20651-6
  • Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Exp Rev Proteomics 2014;11:315-29
  • Brahma RK, McCleary RJ, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 2015;93:1-10
  • Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom 2007;42:1405-14
  • Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Exp Rev Proteomics 2011;8:739-58
  • Rokyta DR, Wray KP, Lemmon AR, et al. A high-throughput venom-gland transcriptome for the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon 2011;57:657-71
  • Rokyta DR, Lemmon AR, Margres MJ, Aronow K. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics 2011;13:312
  • Margres MJ, McGivern JJ, Wray KP, et al. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics 2014;96:145-58
  • Margres MJ, McGivern JJ, Seavy M, et al. Contrasting modes and tempos of venom expression evolution in two snake species. Genetics 2015;199:165-76
  • Palisot de Beauvois AMFJ. Memoir on Amphibia. Serpentes. Transac. Am Philosoph Soc 1799;4:362-81
  • Timmerman WW, Martin WH, Moriarity J. Conservation guide to the eastern diamondback rattlesnake. Soc Study Amph Rept Circ 2003;32:1-55
  • Klauber LM. Rattlesnakes: Their habitats, life histories, and influence on mankind. 2nd edition. University of California Press, Berkeley, CA, 1997
  • Campbell JA, Lamar WW. The venomous reptiles of the western hemisphere, volume 2 Crotalus adamanteus Palisot de Beauvois, Comstock Publishing Associates, Ithaca and London, 2004. p. 525-7
  • Straight RC, Glenn JL, Wolt TB, Wolfe MC. Regional differences in content of small basic peptide toxins in the venoms of Crotalus adamanteus and Crotalus horridus. Comp Biochem Physiol 1991;100B:51-8
  • Margres MJ, Wray KP, Seavy M, et al. Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus). Mol Ecol 2015;24:3405-20
  • Ditmars RL. The reptiles of North America. A review of the crocodilians, lizards, snakes, turtles and tortoises inhabiting the United States and northern Mexico. Doubelday, Doran & Co, Garden City, NY 1936. p. 1-476
  • Wood G. The Guinness Book of Animal Facts and Feats. Sterling Pub. Co, Inc., 3rd Sub edition. 1983. p. 256
  • McDiarmid RW, Campbell JA, Touré T. Snake Species of the World: A Taxonomic and Geographic Reference, volume 1. Herpetologists’ League, 1999. p. 511
  • Ernst CH, Ernst EM. Venomous Reptiles of the United States, Canada, and Northern Mexico, vol. 2, The John Hopkins University Press, Baltimore, Maryland, 2012. p. 12-26
  • Saviola AJ, Chiszar D, Busch C, Mackessy SP. Molecular basis for prey relocation in viperid snakes. BMC Biol 2013;11:20
  • Norris R. Venom Poisoning in North American Reptiles. In: Campbell JA, Lamar WW, editors. The Venomous Reptiles of the Western Hemisphere, Comstock Publishing Associates, Ithaca, London, 2004. p. 683-708
  • Glenn JL, Straight RC. The rattlesnakes and their venom yield and lethal toxicity, In: Tu AT, editor. Rattlesnake venoms: their actions and treatments, Marcel Dekker, NY, 1982. p. 3-119
  • Brown JH. Toxicology and Pharmacology of Venoms from Poisonous Snakes, Charles C. Thomas, Springfield, Illinois, 1973. p. 1-184
  • Norris RL, Bush SP. Bites by venomous reptiles in the Americas, In: Auerbach PS, editor. Wilderness medicine, 4th edition. Mosby, St. Louis, Missouri 2007. p. 1051-85
  • Wellner D, Meister A. Crystalline L-amino acid oxidase of Crotalus adamanteus. J Biol Chem 1960;235:2013-18
  • Bonilla CA, Fiero K, Frank LP. Toxins of animal and plant origin. In: de Vries A, Kochva E, editors. Isolation of a basic protein neurotoxin from Crotalus adamanteus venom. Gordon and Breach Science Publishers, New York, 1971;1:343-57
  • Lee CY. Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann Rev Pharmacol 1972;12:265-86
  • Tatsuki T, Iwanaga S, Suzuki T. A simple method for preparation of snake venom phosphodiesterase almost free from 5’-nucleotidase. J Biochem 1975;77:831-6
  • Sulkowski E, Kress LF, Laskowski M. Crystalline basic protein from venom of Crotalus adamanteus. Toxicon 1975;13:149-57
  • Tsao FH, Keim PS, Henrikson RL. Crotalus adamanteus phospholipase. A2-alpha subunit structure. NH2-terminal sequence, and homology with other phospholipases. Arch Biochem Biophys 1975;167:706-17
  • van Mierop LHS. Poisonous snakebite: a review. 2. Symptomatology and treatment. J Florida Med Assoc 1976;63:201-10
  • Markland FS, Pirkle H. Thrombin-like enzyme from the venom of Crotalus adamanteus (eastern diamondback rattlesnake). Thromb Res 1977;10:487-94
  • Kurecki T, Laskowski MSr, Kress LF. Purification and some properties of two proteinases from Crotalus adamanteus venom that inactivate human alpha 1-proteinase inhibitor. J Biol Chem 1978;253:8340-5
  • Nikai T, Kito R, Mori N, et al. Isolation and characterization of fibrinogenase from western diamondback rattlesnake venom and its comparison to the thrombin-like enzyme. crotalase. Comp Biochem Physiol B 1983;76:679-86
  • National natural toxins research center. Available from: www.tamuk.edu/nntrc/
  • Matrix Science. Available from: www.matrixscience.com/
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215:403-10
  • Deciphering function and evolution of biological systems. Available from: http://blast.ncbi.nlm.nih.gov/Blast.cgi
  • Pawlak J, Kini RM. Snake venom glutaminyl cyclase. Toxicon 2006;48:278-86
  • Calvete JJ, Fasoli E, Sanz L, et al. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res 2009;8:3055-67
  • Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 2008;275:3016-30
  • Arlinghaus FT, Eble JA. C-type lectin-like proteins from snake venoms. Toxicon 2012;60:512-19
  • Mizuno H, Fujimoto Z, Koizumi M, et al. Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 A: implication of central loop swapping based on deletion in the linker region. J Mol Biol 1999;289:103-12
  • Fukuda K, Mizuno H, Atoda H, Morita T. Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers. Biochemistry 2000;39:1915-23
  • Ullah A, Souza TA, Zanphorlin LM, et al. Crystal structure of Jararacussin-I: the highly negatively charged catalytic interface contributes to macromolecular selectivity in snake venom thrombin-like enzymes. Protein Sci 2013;22:128-32
  • Nedelkov D, Bieber AL. Characterization of the two myotoxin a isomers from the prairie rattlesnake (Crotalus viridis viridis) by capillary zone electrophoresis and fluorescence quenching studies. Toxicon 1997;35:689-98
  • Doley R, Kini RM. Protein complexes in snake venoms. Cell Mol Life Sci 2009;66:2851-71
  • Yamashiro ET, Oliveira AK, Kitano ES, et al. Proteoforms of the platelet-aggregating enzyme PA-BJ, a serine proteinase from bothrops jararaca venom. Biochim Biophys Acta 2014;1844:2068-76
  • Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 2000;97:9390-5
  • Calvete JJ, Borges A, Segura A, et al. Snake venomics and antivenomics of bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J Proteomics 2009;72:227-40
  • Jorge RJ, Monteiro HS, Gonçalves-Machado L, et al. Venomics and antivenomics of bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics 2015;114:93-114
  • Fox JW, Ma L, Nelson K, et al. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon 2006;47:700-14
  • Melani RD, Araujo GDT, Carvalho PC, et al. Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteomics 2015. in press Available from: http://dx.doi.org/10.1016/j.euprot.2015.05.006
  • Bandeira N, Clauser KR, Pevzner PA. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics 6 2007; 6(7):1123-34
  • Li S, Wang J, Zhang X, et al. Proteomic characterization of two snake venoms: Naja naja atra and agkistrodon halys. Biochem J 2004;384:119-27
  • Sousa LF, Nicolau CA, Peixoto PS, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Negl Trop Dis 2013;7:e2442
  • Aird SD, Watanabe Y, Villar-Briones A, et al. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics 2013;14:790
  • Melani RD, Goto-Silva L, Nogueira FCSN, et al. Shotgun approaches for venom analysis, In: Gopalakrishnakone P, Calvete JJ, editors. Handbook of Toxicology. Venom Genomics and Proteomics, Springer, The Netherlands, 2015; in press
  • Durban J, Pérez A, Sanz L, et al. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013;14:234
  • Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 2009;72:740-9
  • Villanueva J, Carrascal M, Abian J. Isotope dilution mass spectrometry for absolute quantification in proteomics: concepts and strategies. J Proteomics 2014;96:184-99
  • Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005;35:265-73
  • Adrait A, Lebert D, Trauchessec M, et al. Development of a protein standard absolute quantification (PSAQ™) assay for the quantification of staphylococcus aureus enterotoxin A in serum. J Proteomics 2012;75:3041-9
  • Aitchison J. The statistical analysis of compositional data. Chapman & Hall, NY 1986. p. 416
  • Aitchison J, Egozcue JJ. Compositional data analysis: where are we and where should we be heading? Math Geol 2005;37:829-50
  • Aitchison J. Principal component analysis of compositional data. Biometrika 1983;1:57-65
  • Aitchison J. Reducing the dimensionality of compositional data sets. Math Geol 1984;16:617-35
  • Kucera M, Malmgren BA. Logratio transformation of compositional data. A resolution of the constant sum constraint. Marine Micropaleontol 1998;34:117-20
  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueraz G, Barceló-Vidal C. Isometric logratio transformations for compositional data analysis. Math Geol 2003;35:279-300
  • Filzmoser P, Hron K, Reinmann C. Principal component analysis for compositional data with outliers. Environmetrics 2009;20:621-32
  • Rokyta DR, Wray KP, McGivern JJ, Margres MJ. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). Toxicon 2015;98:34-48
  • Wray KP, Margres MJ, Seavy M, Rohyta DR. Early significant ontogenetic changes in snake venoms. Toxicon 2015;96:74-81
  • Mathé-Hubert H, Gatti JL, Colinet D, et al. Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: an application to parasitoid venom. Mol Ecol Resour 2015. [Epub ahead of print]
  • Gibbs HL, Sanz L, Calvete JJ. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J Mol Evol 2009;68:113-25
  • Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003;4:117
  • Schwanhäusser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature 2013;473:337-42
  • Madrigal M, Sanz L, Flores-Diaz M, et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of L. stenophrys and comparative proteomics of the venoms of adult L. melanocephala and L. acrochorda. J Proteomics 2012;77:280-97
  • Saviola AJ, Pla D, Sanz L, et al. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®. J Proteomics 2015;121:28-43
  • Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014;445:683-93
  • Dang X, Scotcher J, Wu S, et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics 2014;14:1130-40
  • Gault J, Malosse C, Machata S, et al. Complete posttranslational modification mapping of pathogenic Neisseria meningitidis pilins requires top-down mass spectrometry. Proteomics 2014;14:1141-51
  • Li Y, Compton P, Tran J, et al. Optimizing capillary electrophoresis for top-down proteomics of 30-80 kDa proteins. Proteomics 2014;14:1158-64
  • Cannon JR, Cammarata MB, Robotham SA, et al. Utlraviolet photodissociation for characterization of whole proteins on a chromatographic time scale. Anal Chem 2014;86:2185-92
  • Mazur MT, Cardasis HL, Spellman DS, et al. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc Natl Acad Sci USA 2010;107:7728-33
  • Kelleher NL, Thomas PM, Ntai I, et al. Deep and quantitative top-down proteomics in clinical and translational research. Expert Rev Proteomics 2014;11:649-51
  • Bettmer J, Montes-Bayón M, Encinar JR, et al. The emerging role of ICP-MS in proteomic analysis. J Proteomics 2009;72:989-1005
  • Feng L, Zhang D, Wang J, et al. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Anal Chim Acta 2015;884:19-25
  • Rappel C, Schaumlöffel D. The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal Bioanal Chem 2008;390:605-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.