239
Views
15
CrossRef citations to date
0
Altmetric
Review

Clinical implications of recent findings in schistosome proteomics

, &

References

•• The complete Schistosoma mansoni genome.

•• The complete Schistosoma japonicum genome.

•• The complete Schistosoma haematobium genome.

  • Liu F, Lu J, Hu W, et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog. 2006;2:e29.

•• Important study combining extensive transcriptomics and shotgun proteomics of S. japonicum.

  • Sotillo J, Pearson M, Becker L, et al. A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. Int J Parasitol. 2015;45:505–516.

• Proteomic identification of surface antigens on schistosomula using biotinylation.

  • De la Torre Escudero E, Manzano-Roman R, Valero L, et al. Comparative proteomic analysis of Fasciola hepatica juveniles and Schistosoma bovis schistosomula. J Proteomics. 2011;74:1534–1544.
  • Higon M, Cowan G, Nausch N, et al. Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni. Parasitology. 2011;138:1607–1619.
  • Knudsen GM, Medzihradszky KF, Lim K-C, et al. Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol Cell Proteomics. 2005;4:1862–1875.
  • Hansell E, Braschi S, Medzihradszky KF, et al. Proteomic analysis of skin invasion by blood fluke larvae. PLoS Negl Trop Dis. 2008;2:e262.
  • Kariuki TM, Farah IO, Wilson RA, et al. Antibodies elicited by the secretions from schistosome cercariae and eggs are predominantly against glycan epitopes. Parasite Immunol. 2008;30:554–562.
  • Guillou F, Roger E, Mone Y, et al. Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol Biochem Parasitol. 2007;155:45–56.
  • Ridi RE, Tallima H. Schistosoma mansoni ex vivo lung-stage larvae excretory-secretory antigens as vaccine candidates against schistosomiasis. Vaccine. 2009;27:666–673.
  • Hall SL, Braschi S, Truscott M, et al. Insights into blood feeding by schistosomes from a proteomic analysis of worm vomitus. Mol Biochem Parasitol. 2011;179:18–29.
  • Wang J, Zhao F, Yu C-X, et al. Identification of proteins inducing short-lived antibody responses from excreted/secretory products of Schistosoma japonicum adult worms by immunoproteomic analysis. J Proteomics. 2013;87:53–67.
  • Liu F, Cui SJ, Hu W, et al. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics. 2009;8:1236–1251.
  • Cass CL, Johnson JR, Califf LL, et al. Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol. 2007;155:84–93.
  • Dewalick S, Bexkens ML, van Balkom BWM, et al. The proteome of the insoluble Schistosoma mansoni eggshell skeleton. Int J Parasitol. 2011;41:523–532.
  • Mathieson W, Wilson RA. A comparative proteomic study of the undeveloped and developed Schistosoma mansoni egg and its contents: the miracidium, hatch fluid and secretions. Int J Parasitol. 2010;40:617–628.
  • Mutapi F, Burchmore R, Mduluza T, et al. Praziquantel treatment of individuals exposed to Schistosoma haematobium enhances serological recognition of defined parasite antigens. J Infect Dis. 2005;192:1108–1118.

•• One of the earliest human immunoprotomics studies on the schistosomes.

  • Mutapi F, Bourke C, Harcus Y, et al. Differential recognition patterns of Schistosoma haematobium adult worm antigens by the human antibodies IgA, IgE, IgG1 and IgG4. Parasite Immunol. 2011;33:181–192.
  • Zhong ZR, Zhou HB, Li XY, et al. Serological proteome-oriented screening and application of antigens for the diagnosis of schistosomiasis japonica. Acta Trop. 2010;116:1–8.
  • Boamah D, Kikuchi M, Huy NT, et al. Immunoproteomics identification of major IgE and IgG4 reactive Schistosoma japonicum adult worm antigens using chronically infected human plasma. Trop Med Health. 2012;40:89–102.
  • Liu F, Hu W, Cui SJ, et al. Insight into the host-parasite interplay by proteomic study of host proteins copurified with the human parasite, Schistosoma japonicum. Proteomics. 2007;7:450–462.
  • Neves L, Sanson A, Wilson R, et al. Whats in SWAP? Abundance of the principal constituents in a soluble extract of Schistosoma mansoni revealed by shotgun proteomics. Parasit Vectors. 2015;8:337.
  • Gaze S, Driguez P, Pearson MS, et al. An immunomics approach to schistosome antigen discovery: antibody signatures of naturally resistant and chronically infected individuals from endemic areas. PLoS Pathog. 2014;10:e1004033.

• Schistosome protein microarray used with humans naturally resistant to and with chronic S. mansoni infection. Putative vaccine candidates identified.

  • Pearson M, Becker L, Driguez P, et al. Of monkeys and men: immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates. Front Immunol. 2015;6:216.
  • Driguez P, McWilliam HE, Gaze S, et al. Specific humoral response of hosts with variable schistosomiasis susceptibility. Immunol Cell Biol. 2015. doi:10.1038/icb.2015.61. [Epub ahead of print].
  • Driguez P, Li Y, Gaze S, et al. Antibody signatures reflect different disease pathologies in patients with schistosomiasis due to Schistosoma japonicum. J Infect Dis. 2015. pii:jiv356. [Epub ahead of print].
  • McWilliam H, Driguez P, Piedrafita D, et al. Discovery of novel Schistosoma japonicum antigens using a targeted protein microarray approach. Parasit Vectors. 2014;7:290.
  • Chen J-H, Zhang T, Ju C, et al. An integrated immunoproteomics and bioinformatics approach for the analysis of Schistosoma japonicum tegument proteins. J Proteomics. 2014;98:289–299.
  • Xu X, Zhang Y, Lin D, et al. Serodiagnosis of Schistosoma japonicum infection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in China. Lancet Infect Dis. 2014;14:489–497.

•• Protein microplate array used to identify an important diagnostic antigen after screening with S. japonicum infected human sera. Diagnostic antigen found to have excellent potential after extensive testing in field.

  • Harvie M, Jordan TW, La Flamme AC. Differential liver protein expression during schistosomiasis. Infect Immun. 2007;75:736–744.
  • Manivannan B, Jordan TW, Secor WE, et al. Proteomic changes at 8 weeks after infection are associated with chronic liver pathology in experimental schistosomiasis. J Proteomics. 2012;75:1838–1848.
  • De La Torre-Escudero E, Perez-Sanchez R, Manzano-Roman R, et al. Schistosome infections induce significant changes in the host biliary proteome. J Proteomics. 2015;114:71–82.
  • Ferreira MS, De Oliveira DN, De Oliveira RN, et al. Mass spectrometry imaging: a new vision in differentiating Schistosoma mansoni strains. J Mass Spectrom. 2014;49:86–92.

• First MALDI-TOF MS imaging study on schistosomes.

  • Ferreira MS, de Oliveira RN, de Oliveira DN, et al. Revealing praziquantel molecular targets using mass spectrometry imaging: an expeditious approach applied to Schistosoma mansoni. Int J Parasitol. 2015;45:385–391.
  • Mulvenna J, Moertel L, Jones MK, et al. Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol. 2010;40:543–554.
  • Braschi S, Wilson RA. Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol Cell Proteomics. 2006;5:347–356.

• Early biotinylation study of a schistosome species.

  • Braschi S, Borges WC, Wilson RA. Proteomic analysis of the schistosome tegument and its surface membranes. Mem Inst Oswaldo Cruz. 2006;101(Suppl 1):205–212.
  • Zhang M, Hong Y, Han Y, et al. Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J Proteome Res. 2013;12:5260–5270.
  • Braschi S, Curwen RS, Ashton PD, et al. The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics. 2006;6:1471–1482.
  • Curwen RS, Ashton PD, Johnston DA, et al. The Schistosoma mansoni soluble proteome: a comparison across four life-cycle stages. Mol Biochem Parasitol. 2004;138:57–66.
  • Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool. 2004;82:211–232.
  • Skelly PJ, Wilson RA. Making sense of the schistosome surface. Adv Parasitol. 2006;63:185–284.

•• Seminal review of the schistosome tegument surface.

  • Skelly PJ, Kim JW, Cunningham J, et al. Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J Biol Chem. 1994;269:4247–4253.
  • Gobert GN, Stenzel DJ, McManus DP, et al. The ultrastructural architecture of the adult Schistosoma japonicum tegument. Int J Parasitol. 2003;33:1561–1575.
  • Jones MK, Gobert GN, Zhang L, et al. The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions. Bioessays. 2004;26:752–765.
  • You H, Gobert GN, Duke MG, et al. The insulin receptor is a transmission blocking veterinary vaccine target for zoonotic Schistosoma japonicum. Int J Parasitol. 2012;42:801–807.
  • Dissous C, Khayath N, Vicogne J, et al. Growth factor receptors in helminth parasites: signalling and host-parasite relationships. FEBS Lett. 2006;580:2968–2975.
  • Wilson RA. Proteomics at the schistosome-mammalian host interface: any prospects for diagnostics or vaccines? Parasitology. 2012;139:1178–1194.
  • Toh SQ, Glanfield A, Gobert GN, et al. Heme and blood-feeding parasites: friends or foes? Parasit Vectors. 2010;3:108.
  • Gobert GN, McManus DP, Nawaratna S, et al. Tissue-specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl Trop Dis. 2009;3:e469.
  • Nawaratna SS, Gobert GN, Willis C, et al. Transcriptional profiling of the oesophageal gland region of male worms of Schistosoma mansoni. Mol Biochem Parasitol. 2014;196:82–89.
  • Nawaratna SS, McManus DP, Moertel L, et al. Gene Atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis. 2011;5:e1043.
  • Delcroix M, Medzihradsky K, Caffrey CR, et al. Proteomic analysis of adult S. mansoni gut contents. Mol Biochem Parasitol. 2007;154:95–97.
  • Wilson RA. The saga of schistosome migration and attrition. Parasitology. 2009;136:1581–1592.
  • Chai M, McManus DP, McInnes R, et al. Transcriptome profiling of lung schistosomula, in vitro cultured schistosomula and adult Schistosoma japonicum. Cell Mol Life Sci. 2006;63:919–929.
  • Protasio AV, Dunne DW, Berriman M. Comparative study of transcriptome profiles of mechanical- and skin-transformed Schistosoma mansoni schistosomula. PLoS Negl Trop Dis. 2013;7:e2091.
  • Loukas A, Gaze S, Mulvenna JP, et al. Vaccinomics for the major blood feeding helminths of humans. OMICS. 2011;15:567–577.
  • Fonseca CT, Braz Figueiredo Carvalho G, Carvalho Alves C, et al. Schistosoma tegument proteins in vaccine and diagnosis development: an update. J Parasitol Res. 2012;2012:541268.
  • Everts B, Perona-Wright G, Smits HH, et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J Exp Med. 2009;206:1673–1680.
  • Wuhrer M, Balog CI, Catalina MI, et al. IPSE/alpha-1, a major secretory glycoprotein antigen from schistosome eggs, expresses the Lewis X motif on core-difucosylated N-glycans. FEBS J. 2006;273:2276–2292.
  • Abdulla MH, Lim KC, McKerrow JH, et al. Proteomic identification of IPSE/alpha-1 as a major hepatotoxin secreted by Schistosoma mansoni eggs. PLoS Negl Trop Dis. 2011;5:e1368.
  • Lamberton PHL, Kabatereine NB, Oguttu DW, et al. Sensitivity and specificity of multiple kato-katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment. PLoS Negl Trop Dis. 2014;8:e3139.
  • Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, et al. Deciphering the glycogenome of schistosomes. Front Genet. 2014;5:262.
  • Bickle QD. Radiation-attenuated schistosome vaccination—a brief historical perspective. Parasitology. 2009;136:1621–1632.
  • Castro-Borges W, Dowle A, Curwen RS, et al. Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis. 2011;5:e993.
  • Castro-Borges W, Simpson DM, Dowle A, et al. Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J Proteomics. 2011;74:1519–1533.
  • Skelly PJ. Intravascular schistosomes and complement. Trends Parasitol. 2004;20:370–374.
  • Wu C, Hou N, Piao X, et al. Non-immune immunoglobulins shield Schistosoma japonicum from host immunorecognition. Scientific Reports. 2015;5:13434.
  • Doolan DL, Aguiar JC, Weiss WR, et al. Utilization of genomic sequence information to develop malaria vaccines. J Exp Biol. 2003;206:3789–3802.
  • Davies DH, Liang X, Hernandez JE, et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci USA. 2005;102:547–552.
  • Driguez P, Doolan DL, Loukas A, et al. Schistosomiasis vaccine discovery using immunomics. Parasit Vectors. 2010;3:4.

• First schistosome protein microarray for immunoproteomics.

  • Doolan DL. Plasmodium immunomics. Int J Parasitol. 2011;41:3–20.
  • Driguez P, Doolan D, Molina D, et al. Protein microarrays for parasite antigen discovery. In: Peacock C, editor. Parasite genomics protocols. New York (NY): Springer; 2015. p. 221–233.
  • Silva-Moraes V, Ferreira JM, Coelho PM, et al. Biomarkers for schistosomiasis: towards an integrative view of the search for an effective diagnosis. Acta Trop. 2014;132:75–79.
  • Ludolf F, Patrocinio PR, Correa-Oliveira R, et al. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Negl Trop Dis. 2014;8:e2745.
  • Clinical.Trials.gov, National Institute of Health. Study to evaluate the safety of the vaccine prepared sm14 against schistosomiasis. Oswaldo Cruz Foundation; 2013. [cited 2015 Oct 9]. Available from: http://clinicaltrials.gov/ct2/show/study/NCT01154049.
  • Riveau G, Deplanque D, Remoue F, et al. Safety and immunogenicity of rSh28GST antigen in humans: Phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl Trop Dis. 2012;6:e1704.
  • Curti E, Kwityn C, Zhan B, et al. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis. Hum Vaccin Immunother. 2013;9:2342–2350.
  • Cheng W, Curti E, Rezende WC, et al. Biophysical and formulation studies of the Schistosoma mansoni TSP-2 extracellular domain recombinant protein, a lead vaccine candidate antigen for intestinal schistosomiasis. Hum Vaccin Immunother. 2013;9:2351–2361.
  • Chuah C, Jones MK, Burke ML, et al. Spatial and temporal transcriptomics of Schistosoma japonicum-induced hepatic granuloma formation reveals novel roles for neutrophils. J Leukoc Biol. 2013;94:353–365.
  • Perry CR, Burke ML, Stenzel DJ, et al. Differential expression of chemokine and matrix re-modelling genes is associated with contrasting schistosome-induced hepatopathology in murine models. PLoS Negl Trop Dis. 2011;5:e1178.
  • Fu CL, Odegaard JI, Herbert DR, et al. A novel mouse model of Schistosoma haematobium egg-induced immunopathology. PLoS Pathog. 2012;8:e1002605.
  • Brophy PM, MacKintosh N, Morphew RM. Anthelmintic metabolism in parasitic helminths: proteomic insights. Parasitology. 2012;139:1205–1217.
  • Barrett J. Helminth detoxification mechanisms. J Helminthol. 1997;71:85–89.
  • Chemale G, Perally S, LaCourse EJ, et al. Comparative proteomic analysis of triclabendazole response in the liver fluke Fasciola hepatica. J Proteome Res. 2010;9:4940–4951.
  • Perez-Sanchez R, Ramajo-Hernandez A, Ramajo-Martin V, et al. Proteomic analysis of the tegument and excretory-secretory products of adult Schistosoma bovis worms. Proteomics. 2006;6(Suppl 1):S226–S236.
  • Gobert GN, Stenzel DJ, Jones MK, et al. Immunolocalization of the fatty acid-binding protein Sj-FABPc within adult Schistosoma japonicum. Parasitology. 1997;115(Pt 1):33–39.
  • De Souza AL, Andreani T, De Oliveira RN, et al. In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int J Pharm. 2014;463:31–37.
  • Pica-Mattoccia L, Cioli D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int J Parasitol. 2004;34:527–533.
  • You H, McManus DP, Hu W, et al. Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signalling pathway member CamKII. PLoS Pathog. 2013;9:e1003254.
  • Ricciardi A, Ndao M. Still hope for schistosomiasis vaccine. Hum Vaccin Immunother. Forthcoming 2015. DOI:10.1080/21645515.21642015.21059981.
  • Diniz PP, Nakajima E, Miyasato PA, et al. Two SmDLC antigens as potential vaccines against schistosomiasis. Acta Trop. 2014;140C:193–201.
  • Brindley PJ, Hotez PJ. Break out: urogenital schistosomiasis and Schistosoma haematobium infection in the post-genomic era. PLoS Negl Trop Dis. 2013;7:e1961.
  • Homann M, Goringer HU. Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest therapeutic “piggy-back” approach. Bioorg Med Chem. 2001;9:2571–2580.
  • Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist. 2014;4:95–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.