454
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Urinary proteomics for the study of genetic kidney diseases

, , &
Pages 309-324 | Received 26 Oct 2015, Accepted 22 Dec 2015, Published online: 18 Jan 2016

References

  • Reeders ST, Breuning MH, Davies KE, et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature. 1985;317:542–544.
  • Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–1227.
  • Devuyst O, Knoers NV, Remuzzi G, et al. Board of the working group for inherited kidney diseases of the european renal association and european dialysis and transplant association. rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014 May 24;383:1844–1859.
  • Hessheimer JA, Vidal O, Valentini M, et al. Pheochromocytoma as a rare cause of arterial hypertension in a patient with autosomal dominant polycystic kidney disease: a diagnostic and therapeutic dilemma. Int J Surg Case Rep. 2015;14:85–88.
  • Hildebrandt F. Genetic kidney diseases. Lancet. 2010;375:1287–1295.
  • Shao L, Ren H, Wang W, et al. Novel SLC12A3 mutations in Chinese patients with Gitelman’s syndrome. Nephron Physiol. 2008;108:29–36.
  • Riveira-Munoz E, Chang Q, Bindels RJ. Devuyst O Gitelman’s syndrome: towards genotype-phenotype correlations? Pediatr Nephrol. 2007;22:326–332.
  • Nozu K, Iijima K, Nozu Y, et al. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome. Pediatr Res. 2009;66:590–593.
  • Bruschi M, Ravera S, Santucci L, et al. The human urinary exosome as a potential metabolic effector cargo. Expert Rev Proteomics. 2015;12:425–432.
  • Vaidyanathan K. Urinary proteomics and metabolomics in the diagnosis of pediatric disorders. Proteomics Clin Appl. 2015;9:482–489.
  • Zheng J, Liu L, Wang J, et al. Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genomics. 2013;14:1–10.
  • Muntel J1, Xuan Y2, Berger ST, et al. Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-Orbitrap mass spectrometer. Proteome Res. 2015;14:4752–4762.
  • Decramer S. Gonzalez de Peredo A, Breuil B et al. Urine in Clinical Proteomics. Mol Cell Proteomics. 2008;7:1850–1862.
  • Pontillo C, Filip S, Borràs DM, et al. CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl. 2015;9:322–334.
  • Good DM, Zürbig P, Argilés A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–2437.
  • Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal. 2015;113:2–20.
  • Megger DA, Bracht T, Meyer HE, et al. Label-free quantification in clinical proteomics. Biochim Biophys Acta. 2013;1834:1581–1590.
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci.USA. 2004;101:13368–13373.
  • Hoorn EJ, Pisitkun T, Zietse R, et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton). 2005;10:283–290.
  • Moon PG, You S, Lee JE, et al. Urinary exosomes and proteomics. Mass Spectrom Rev. 2011;30:1185–1202.
  • Gámez-Valero A, Lozano-Ramos SI, Bancu I, et al. Urinary extracellular vesicles as source of biomarkers in kidney diseases. Front Immunol. 2015;6:6.
  • Erdbrügger U, Le TH. Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol. 2015. published online 6 August 2015. doi:10.1681/ASN.2015010074.
  • Musante L, Tataruch DE, Holthofer H. Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Front Endocrinol (Lausanne). 2014;5:149.
  • Raimondo F, Corbetta S, Chinello C, et al. The urinary proteome and peptidome of renal cell carcinoma patients: a comparison of different techniques. Expert Rev Proteomics. 2014;11:503–514.
  • Salih M, Zietse R, Hoorn EJ. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol Renal Physiol. 2014;306:F1251F1259.
  • Wood SL, Knowles MA, Thompson D, et al. Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nat Rev Urol. 2013;10:206–218.
  • Felder RA, White MJ, Williams SM, et al. Diagnostic tools for hypertension and salt sensitivity testing. Curr Opin Nephrol Hypertens. 2013;22:65–76.
  • Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics. 2013;13:1572–1580.
  • Santucci L, Candiano G, Bruschi M, et al. Urinary proteome in a snapshot: normal urine and glomerulonephritis. J Nephrol. 2013;26:610–616.
  • Ranghino A, Dimuccio V, Papadimitriou E, et al. Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration. Clin Kidney J. 2015;8:23–30.
  • Hogan MC, Bakeberg JL, Gainullin VG, et al. Identification of biomarkers for PKD1 using urinary exosomes. J Am Soc Nephrol. 2015;26:1661–1670.
  • Corbetta S, Raimondo F, Tedeschi S, et al. Urinary exosomes in the diagnosis of Gitelman and Bartter syndromes. Nephrol Dial Transplant. 2015;30:621–630.
  • Chacon-Heszele MF, Choi SY, Zuo X, et al. The exocyst and regulatory GTPases in urinary exosomes. Physiol Rep. 2014;2:e12116.
  • Hiemstra TF, Charles PD, Gracia T, et al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol. 2014;25:2017–2027.
  • Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst. 2013;9:1220–1233.
  • Mischak H. Pro: urine proteomics as a liquid kidney biopsy: no more kidney punctures! Nephrol Dial Transplant. 2015;30:532–537.
  • Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;15:1–14.
  • Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics. 2011;8:615–629.
  • Thongboonkerd V. Practical points in urinary proteomics. J Proteome Res. 2007;6:3881–3890.
  • Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69:1471–1476.
  • Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292:F1657F1661.
  • Jacquillet G, Hoorn EJ, Vilasi A, et al. Urinary vesicles: in splendid isolation. Nephrol Dial Transplant. 2013;28:1332–1335.
  • Oosthuyzen W, Sime NE, Ivy JR, et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol. 2013;591:5833–5842.
  • Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl. 2015;9:358–367.
  • Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82:1024–1032.
  • Lhotta K. Uromodulin and chronic kidney disease. Kidney Blood Press Res. 2010;33:393–398.
  • Mischak H, Delles C, Klein J, et al. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv Chronic Kidney Dis. 2010;17:493–506.
  • Raimondo F, Corbetta S, Morosi L, et al. Urinary exosomes and diabetic nephropathy: a proteomic approach. Mol Biosyst. 2013;9:1139–1146.
  • Sancho-Martínez SM, Prieto-García L, Blanco-Gozalo V, et al. Urinary proteomics in renal pathophysiology: impact of proteinuria. Proteomics Clin Appl. 2015;9:636–640.
  • Nolen BM, Orlichenko LS, Marrangoni A, et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS One. 2013;8:e63368.
  • Jantos-Siwy J, Schiffer E, Brand K, et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Prot Res. 2009;8:268–281.
  • Scolari F, Izzi C, Ghiggeri GM. Uromodulin: from monogenic to multifactorial diseases. Nephrol Dial Transplant. 2015;30:1250–1256.
  • Street JM, Birkhoff W, Menzies RI, et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol. 2011;589:6119–6127.
  • Momen-Heravi F, Balaj L, Alian S, et al. Alternative methods for characterization of extracellular vesicles. Front Physiol. 2012;3:354.
  • Sitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem. 2015;87:9225–9233.
  • Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytometry A. 2015. published online 20 October 2015. doi:10.1002/cyto.a.22787.
  • Maas SL, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015;200:87–96.
  • Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest. 2014;124:2315–2324.
  • Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics. 2014;134:e833e845.
  • Hogan MC, Manganelli L, Woollard JR, et al. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol. 2009;20:278–288.
  • Pampliega O, Orhon I, Patel B, et al. Functional interaction between autophagy and ciliogenesis. Nature. 2013;502:194–200.
  • Wood CR, Huang K, Diener DR, et al. The cilium secretes bioactive ectosomes. Curr Biol. 2013;23:906–911.
  • Gerlach JQ, Krüger A, Gallogly S, et al. Surface glycosylation profiles of urine extracellular vesicles. PLoS One. 2013;8:e74801.
  • Pocsfalvi G, Raj DA, Fiume I, et al. Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease. Proteomics Clin Appl. 2015;9:552–567.
  • Kelly KJ, Zhang J, Han L, et al. Improved structure and function in autosomal recessive polycystic rat kidneys with renal tubular cell therapy. PLoS ONE. 2015;10:e0131677.
  • Kistler AD, Mischak H, Poster D, et al. Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2009;76:89–96.
  • Zürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–3313.
  • Chinello C, Cazzaniga M, De Sio G, et al. Urinary signatures of renal cell carcinoma investigated by peptidomic approaches. Plos One. 2014;9:e106684.
  • Chinello C, Cazzaniga M, De Sio G, et al. Tumor size, stage and grade alterations of urinary peptidome in RCC. J Transl Med. 2015;13:332.
  • Kistler AD, Serra AL, Siwy J, et al. Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS One. 2013;8:e53016.
  • Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol. 2014;592:4013–4023.
  • Pohl M, Danz K, Gross O, et al. Diagnosis of Alport syndrome–search for proteomic biomarkers in body fluids. Pediatr Nephrol. 2013;28:2117–2123.
  • Baum A, Pohl M, Kreusch S, et al. Searching biomarker candidates in serum using multidimensional native chromatography. II Method evaluation with Alport syndrome and severe inflammation. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;876:31–40.
  • Waldek S, Feriozzi S. Fabry nephropathy: a review - how can we optimize the management of Fabry nephropathy? BMC Nephrol. 2014;15:72.
  • Vojtova L, Zima T, Tesar V, et al. Study of urinary proteomes in Anderson-Fabry disease. Ren Fail. 2010;32:1202–1209.
  • Kistler AD, Siwy J, Breunig F, et al. A distinct urinary biomarker pattern characteristic of female Fabry patients that mirrors response to enzyme replacement therapy. PLoS One. 2011;6:e20534.
  • Matafora V, Cuccurullo M, Beneduci A, et al. Early markers of Fabry disease revealed by proteomics. Mol Biosyst. 2015;11:1543–1551.
  • Schulze H, Sandhoff K. Sphingolipids and lysosomal pathologies. Biochim Biophys Acta. 2014;1841:799–810.
  • Manwaring V, Heywood WE, Clayton R, et al. The identification of new biomarkers for identifying and monitoring kidney disease and their translation into a rapid mass spectrometry-based test: evidence of presymptomatic kidney disease in pediatric Fabry and type-I diabetic patients. J Proteome Res. 2013;12:2013–2021.
  • Klootwijk ED, Reichold M, Unwin RJ, et al. Renal Fanconi syndrome: taking a proximal look at the nephron. Nephrol Dial Transplant. 2015;30:1456–1460.
  • Cutillas PR, Norden AG, Cramer R, et al. Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin Sci (Lond). 2003;104:483–490.
  • Cutillas PR, Chalkley RJ, Hansen KC, et al. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol. 2004;287:F353F364.
  • Norden AG, Sharratt P, Cutillas PR, et al. Quantitative amino acid and proteomic analysis: very low excretion of polypeptides >750 Da in normal urine. Kidney Int. 2004;66:1994–2003.
  • Vilasi A, Cutillas PR, Maher AD, et al. Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am J Physiol Renal Physiol. 2007;293:F456F467.
  • Christensen EI, Devuyst O, Dom G, et al. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA. 2003;100:8472–8477.
  • Santucci L, Candiano G, Anglani F, et al. Urine proteome analysis in Dent’s disease shows high selective changes potentially involved in chronic renal damage. J Proteomics. 2015. published online 11 September 2015. doi:10.1016/j.jprot.2015.08.024.
  • Drube J, Schiffer E, Mischak H, et al. Urinary proteome pattern in children with renal Fanconi syndrome. Nephrol Dial Transplant. 2009;24:2161–2169.
  • Saravakos P, Kokkinou V, Giannatos E. Cystinuria: current diagnosis and management. Urology. 2014;83:693–699.
  • Kovacevic L, Lu H, Goldfarb DS, et al. Urine proteomic analysis in cystinuric children with renal stones. J Pediatr Urol. 2015;11:217.e1-e 6.
  • Bourderioux M, Nguyen-Khoa T, Chhuon C, et al. A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients. J Proteome Res. 2015;14:567–577.
  • Joo KW, Lee JW, Jang HR, et al. Reduced urinary excretion of thiazide-sensitive Na-Cl cotransporter in Gitelman syndrome: preliminary data. Am J Kidney Dis. 2007;50:765–773.
  • Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol. 2011;26:1789–1802.
  • Grimm PR, Lazo-Fernandez Y, Delpire E, et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest. 2015;125:2136–2150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.