844
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Sperm proteomics: potential impact on male infertility treatment

, &
Pages 285-296 | Received 04 Nov 2015, Accepted 03 Feb 2016, Published online: 01 Mar 2016

References

  • World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO Press; 2010.
  • Mahutte NG, Arici A. Failed fertilization: is it predictable?. Curr. Opin. Obstet. Gynecol. 2003;15(3):211–218.
  • Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertility and Sterility. 2004;81(5):1289–1295.
  • Borini A, Tarozzi N, Bizzaro D, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum. Reprod. Oxf. Engl. 2006;21(11):2876–2881.
  • Zhao J, Zhang Q, Wang Y, et al. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 2014;102(4):998–1005.e8.
  • Jin J, Pan C, Fei Q, et al. Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserves. Fertil. Steril. 2015;103(4):910–916.
  • Agarwal A, Sharma R, Durairajanayagam D, et al. Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology. 2015;85(3):580–588.
  • Barazani Y, Agarwal A, Sabanegh ES. Functional sperm testing and the role of proteomics in the evaluation of male infertility. Urology. 2014;84(2):255–261.
  • Intasqui P, Camargo M, Del Giudice PT, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J. Assist. Reprod. Genet. 2013;30(9):1187–1202.
  • Plant TM, Zeleznik AJ. Knobil and Neill’s Physiology of Reproduction: Two-Volume Set. Netherlands: Elsevier; 2015.
  • Gadella BM, Boerke A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogenology. 2016;85(1):113–124.
  • Nagdas SK, Smith L, Mcnamara A, et al. Identification and characterization of a bovine sperm acrosomal matrix protein and its mechanism of interaction with acrosomal hydrolases. Mol. Cell. Biochem. 2015;410:11–23.
  • Erikson DW, Way AL, Bertolla RP, et al. Influence of osteopontin, casein and oviductal fluid on bovine sperm capacitation. Anim Reprod. 2007;4(3/4):103–112.
  • Gonçalves RF, Wolinetz CD, Killian GJ. Influence of arginine-glycine-aspartic acid (RGD), integrins (αV and α5) and osteopontin on bovine sperm–egg binding, and fertilization in vitro. Theriogenology. 2007;67(3):468–474.
  • D’Amours O, Frenette G, Bordeleau L-J, et al. Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biology of Reproduction. 2012;87(4):94.
  • Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int. J. Andrology. 2011;34(5pt2):e475–486.
  • Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J. Andrology. 2007;9(4):483–491.
  • Suryawanshi AR, Khan SA, Joshi CS, et al. Epididymosome-mediated acquisition of MMSDH, an androgen-dependent and developmentally regulated epididymal sperm protein. J. Androl. 2012;33(5):963–974.
  • Aalberts M, Van Dissel-Emiliani FMF, Van Adrichem NPH, et al. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol. Reprod. 2012;86(3):82.
  • Aalberts M, Sostaric E, Wubbolts R, et al. Spermatozoa recruit prostasomes in response to capacitation induction. (BBA) Proteins Proteom. 2013;1834(11):2326–2335. * One important finding that showed the role of exosomes (prostasomes) in sperm capacitation
  • Kanagawa K, Sugimura K, Kuratsukuri K, et al. Norepinephrine activates P44 and P42 MAPK in human prostate stromal and smooth muscle cells but not in epithelial cells. The Prostate. 2003;56(4):313–318.
  • Meggiolaro D, Porcelli F, Carnevali A, et al. A possible role of Fas antigen in ejaculated spermatozoa of fertile bulls: an immunocytochemical quantitative approach. Acta Histochemica. 2006;107(6):463–468.
  • Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol. Reprod. 2006;74(3):530–537.
  • Porcelli F, Meggiolaro D, Carnevali A, et al. Fas ligand in bull ejaculated spermatozoa: A quantitative immunocytochemical study. Acta Histochemica. 2006;108(4):287–292.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.
  • Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013;113(4):2343–2394.
  • Westermeier R. Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis. Arch. Physiol. Biochem. 2014;120(5):168–172.
  • Hall JC, Killian GJ. Two-dimensional gel electrophoretic analysis of rat sperm membrane interaction with cauda epididymal fluid. J. Androl. 1989;10(1):64–76.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 2012;404(4):939–965.
  • Mallick P, Kuster B. Proteomics a pragmatic perspective. Nat. Biotechnol. 2010;28(7):695–709.
  • Scherl A. Clinical protein mass spectrometry. Methods. 2015;81: 3–14.
  • Pennington SR, Wilkins MR, Hochstrasser DF, et al. Proteome analysis: from protein characterization to biological function. Trends Cell Biol. 1997;7(4):168–173.
  • Bland AM, Janech MG, Almeida JS, et al. Sources of variability among replicate samples separated by two-dimensional gel electrophoresis. J. Biomol. Tech. JBT. 2010;21(1):3–8.
  • Choe LH, Lee KH. Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis. 2003;24(1920):3500–3507.
  • López JL. Two-dimensional electrophoresis in proteome expression analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2007;849(1–2):190–202.
  • Whitehouse CM, Dreyer RN, Yamashita M, et al. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 1985;57(3):675–679.
  • Cox J, Mann M. Quantitative high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 2011;80:273–299.
  • Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985;57(14):2935–2939.
  • Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988;2(8):151–153.
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.
  • Intasqui P, Antoniassi MP, Camargo M, et al. Differences in the seminal plasma proteome are associated with oxidative stress levels in men with normal semen parameters. Fertil. Steril. 2015;104(2):292–301.
  • Camargo M, Intasqui Lopes P, Del Giudice PT, et al. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum. Reprod. Oxf. Engl. 2013;28(1):33–46.
  • Intasqui P, Camargo M, Del Giudice PT, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835–843.
  • Lo Turco EG, Souza GHMF, Garcia JS, et al. Effect of endometriosis on the protein expression pattern of follicular fluid from patients submitted to controlled ovarian hyperstimulation for in vitro fertilization. Hum. Reprod. Oxf. Engl. 2010;25(7):1755–1766.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics MCP. 2012;11(6):016717. O111.
  • Xu Y, Bailey U-M, Schulz BL. Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS. Proteomics. 2015;15(13):2177–2186.
  • Zhang Y, Bilbao A, Bruderer T, et al. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. J. Proteome Res. 2015;14(10):4359–4371.
  • Law KP, Lim YP. Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev. Proteomics. 2013;10(6):551–566.
  • Schliekelman P, Liu S. Quantifying the effect of competition for detection between coeluting peptides on detection probabilities in mass-spectrometry-based proteomics. J. Proteome Res. 2014;13(2):348–361.
  • Camerini S, Mauri P, The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J. Chromatogr. A. 2015;1381:1–12.
  • Zuo X, Speicher DW. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics. 2002;2(1):58–68.
  • Zuo X, Hembach P, Echan L, et al. Enhanced analysis of human breast cancer proteomes using micro-scale solution isoelectrofocusing combined with high resolution 1-D and 2-D gels. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2002;782(1):253–265.
  • Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J. Pharm. Biomed. Anal. 2015;113:2–20.
  • Boersema PJ, Raijmakers R, Lemeer S, et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009;4(4):484–494.
  • Marchiani S, Tamburrino L, Ricci B, et al. SUMO1 in human sperm: new targets, role in motility and morphology and relationship with DNA damage. Reprod. Camb. Engl. 2014;148(5):453–467.
  • Marchiani S, Tamburrino L, Giuliano L, et al. Sumo1-ylation of human spermatozoa and its relationship with semen quality. Int. J. Androl. 2011;34(6 Pt 1):581–593.
  • Kasvandik S, Sillaste G, Velthut-Meikas A, et al. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment. Proteomics. 2015;15(11):1906–1920.
  • D’Amours O, Bordeleau L-J, Frenette G, et al. Binder of sperm 1 and epididymal sperm binding protein 1 are associated with different bull sperm subpopulations. Reproduction. 2012;143(6):759–771.
  • Nagdas SK, Winfrey VP, Olson GE. Identification of a hamster sperm 26-kilodalton dehydrogenase/reductase that is exclusively localized to the mitochondria of the flagellum. Biol. Reprod. 2006;75(2):197–202.
  • Nagaraj N, Wisniewski JR, Geiger T, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 2011;7(1):548.
  • Beck M, Schmidt A, Malmstroem J, et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 2011;7(1):549.
  • De Las Rivas J, De Luis A. Interactome data and databases: different types of protein interaction. Comp. Funct. Genomics. 2004;5(2):173–178.
  • Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, et al. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench. 2014;7(1):17–31.
  • Sevimoglu T, Arga KY. The role of protein interaction networks in systems biomedicine. Comput. Struct. Biotechnol. J. 2014;11(18):22–27.
  • Baker MA. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res. 2016;363(1):279–287.
  • Cornwall GA, Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. Adv. Exp. Med. Biol. 2014;759:159–180.
  • Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics MCP. 2013;12(12):3444–3452.
  • Signorelli J, Diaz ES, Morales P. Kinases phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012;349(3):765–782.
  • Al Rawi S, Louvet-Vallée S, Djeddi A, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 2011;334(6059):1144–1147.
  • Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(D1):D377–D386.
  • Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093.
  • Robles MS, Cox J, Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047.
  • Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000;25(1):25–29.
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • Croft D, Mundo AF, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–477.
  • Mitchell A, Chang H-Y, Daugherty L, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(D1):D213–D221.
  • Orchard S, Ammari M, Aranda B, et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42(Database issue):D358–363.
  • Stark C, Breitkreutz B-J, Reguly T, et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34(Database issue):D535–539.
  • Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database–2009 update. Nucleic Acids Res. 2009;37(Database issue):D767–772.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–452.
  • Schmidt A, Forne I, Imhof A. Bioinformatic analysis of proteomics data. BMC Syst. Biol. 2014;8(Suppl 2):S3.
  • Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinforma. Oxf. Engl. 2005;21(16):3448–3449.
  • UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–212.
  • Miescher F. Das Protamin—Eine neue organische Basis aus denSamenf—den des Rheinlachses. Ber Dtsch Chem Ges. 1874;7(1):376.
  • Zhu Y, Wu Y, Jin K, et. al. Differential proteomic profiling in human spermatozoa that did or did not result in pregnancy via IVF and AID. Proteomics Clin Appl. 2013;7(11–12):850–858.
  • Baker MA. The omics revolution and our understanding of sperm cell biology. Asian. J Androl. 2011;13(1):6–10.
  • Oliva R, De Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004–1017.
  • Ijiri TW, Merdiushev T, Cao W, et al. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics. 2011;11(20):4047–4062.
  • Secciani F, Bianchi L, Ermini L, et al., et. al.. Protein profile of capacitated versus ejaculated human sperm. J Proteome Res. 2009;8(7):3377–3389.
  • Xu W, Hu H, Wang Z, et. al.. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J Proteomics. 2012;75(17):5426–5436.
  • Gatti JL, Castella S, Dacheux F, et. al.. Post-testicular sperm environment and fertility. Anim Reprod Sci. 2004;82–83:321–339.
  • Amaral A, Castillo J, Ramalho-Santos J, et al. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014;20(1):40–62.
  • Martínez-Heredia J, Estanyol JM, Ballesca JL, et al. Proteomic identification of human sperm proteins. Proteomics. 2006;6(15):4356–4369.
  • De Mateo S, Martínez-Heredia J, Estanyol JM, et. al.. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7(23):4264–4277. Erratum in: Proteomics.8:4833 (2008). Domíguez-Fandos, David [corrected to Domínguez-Fandos, David].
  • Li J, Liu F, Wang H, et al. Systematic mapping and functional analysis of a family of human epididymal secretory sperm located proteins. Mol Cell Proteomics. 2010;9(11):2517–2528.
  • Li J, Liu F, Liu X, et al. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteomics. 2011;10(3):M110.004630.
  • Naaby-Hansen S, Herr JC. Heat shock proteins on the human sperm surface. J Reprod Immunol. 2010;84(1):32–40.
  • Cedenho AP, Lima SB, Cenedeze MA, et al. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod. 2006;21(7):1791–1794.
  • Ergur AR, Dokras A, Giraldo JL, et al. Sperm maturity and treatment choice of in vitro fertilization (IVF) or intracytoplasmic sperm injection: diminished sperm HspA2 chaperone levels predict IVF failure. Fertil Steril. 2002;77(5):910–918.
  • Huszar G, Stone K, Dix D, et al. Putative creatine kinase M-isoform in human sperm is identified as the 70-kilodalton heat shock protein HspA2. Biol Reprod. 2000;63(3):925–932.
  • Sharma R, Agarwal A, Mohanty G, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11:48. doi:10.1186/1477-7827-11-48
  • Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci. 2006;119(pt 15):3182–3192.
  • Asquith KL. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 2004;117:3645–3657.
  • Wang G, Guo Y, Zhou T, et al., et. al.. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics. 2013;79:114–122.
  • Wolfsberg TG, White JM. ADAMs in fertilization and development. Dev Biol. 1996;180(2):389–401.
  • Martínez-Heredia J, De Mateo S, Vidal-Taboada JM, et al. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23(4):783–791.
  • Zhao C, Huo R, Wang F-Q, et al. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril. 2007;87(2):436–438.
  • Amaral A, Ramalho-Santos J, St John JC. The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod. 2007;22(6):1585–1596.
  • Liao -T-T, Xiang Z, Zhu W-B, et al. Proteome analysis of roundheaded and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl. 2009;11(6):683–693.
  • Behrouzi B, Kenigsberg S, Alladin N, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med. 2013;59(3):153–163.
  • Agarwal A, Sharma R, Durairajanayagam D, et al. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol. 2015;13:8. doi:10.1186/s12958-015-0007-2
  • Agarwal A, Sharma R, Durairajanayagam D, et al. Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J Androl. 2016;18(1):43–53.
  • Hamada A1, Sharma R, Du Plessis SS, et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99(5):1216–1226.
  • Ayaz A, Agarwal A, Sharma R, et al. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics. 2015;12(1):4.
  • De Yebra L, Ballescá JL, Vanrell JA, et al. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–759.
  • Mou L, Zhang Q, Diao R, et al. A functional variant in the UBE2B gene promoter is associated with idiopathic azoospermia. Reprod Biol Endocrinol. 2015;13:79. doi:10.1186/s12958-015-0074-4
  • Huang I, Emery BR, Christensen GL, et al. Novel UBE2B-associated polymorphisms in an azoospermic/oligozoospermic population. Asian J Androl. 2008;10(3):461–466.
  • Paduch DA, Mielnik A, Schlegel PN. Novel mutations in testis-specific ubiquitin protease 26 gene may cause male infertility and hypogonadism. Reprod Biomed Online. 2005;10(6):747–754.
  • Sun C, Skaletsky H, Birren B, et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet. 1999;23(4):429–432.
  • Kleiman SE, Bar-Shira Maymon B, Hauser R, et al. Histone H4 acetylation and AZFc involvement in germ cells of specimens of impaired spermatogenesis. Fertil Steril. 2008;89(6):1728–1736.
  • Agarwal A, Mulgund A, Sharma R, et al. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med. 2014;60(4):206–216.
  • Yatsenko AN, Georgiadis AP, Murthy LJ, et al. Matzuk MM. UBE2B mRNA alterations are associated with severe oligozoospermia in infertile men. Mol Hum Reprod. 2013;19(6):388–394.
  • Shi Y-C, Wei L, Cui Y-X, et al. Association between ubiquitin-specific protease USP26 polymorphism and male infertility in Chinese men. Clin Chim Acta. 2011;412(7–8):545–549.
  • Chan -C-C, Shui H-A, Wu C-H, et al. Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res. 2009;8(11):5382–5386.
  • Parte PP, Rao P, Redij S, et al.. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J Proteomics. 2012;75(18):5861–5871.
  • Yunes R, Doncel GF, Acosta AA. Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples. Biocell. 2003;27(1):29–36.
  • Buffone MG, Calamera JC, Verstraeten SV, et al. Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction. 2005;129(6):697–705.
  • Siva AB, Kameshwari DB, Singh V, et al.. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010;16(7):452–462.
  • Bhagwat S, Dalvi V, Chandrasekhar D, et al. Acetylated α-tubulin is reduced in individuals with poor sperm motility. Fertil Steril. 2014;101(1):95–104.e3.
  • Rawe VY, Olmedo SB, Benmusa A, et al. Sperm ubiquitination in patients with dysplasia of the fibrous sheath. Hum Reprod. 2002;17(8):2119–2127.
  • Johnson WL, Hunter AG, Jeyendran RS, et al. Association of asthenozoospermia with a deficiency of a seminal glycoprotein. Int J Fertil. 1985;30(2):57–60.
  • Kratz EM, Kałuża A, Zimmer M, et al. The analysis of sialylation, N-glycan branching, and expression of O-glycans in seminal plasma of infertile men. Dis Markers. 2015;2015:941871. doi:10.1155/2015/941871
  • Sepideh J, Reza SM, Mahdi AM, et al. Tyrosine phosphorylation pattern in sperm proteins isolated from normospermic and teratospermic men. J Reprod Infertil. 2009;10(3):185–191.
  • Silva JV, Freitas MJ, Correia BR, et al. Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation. Fertil Steril. 2015;104(4):845–856.e8.
  • Sutovsky P. Sperm proteasome and fertilization. Reproduction. 2011;142:1–14.
  • Buffone MG, Brugo-Olmedo S, Calamera JC, et al. Decreased protein tyrosine phosphorylation and membrane fluidity in spermatozoa from infertile men with varicocele. Mol Reprod Dev. 2006;73(12):1591–1599.
  • Corrales JJ, Burgo RM, Galindo P, et al. Abnormal expression of acid glycosidases in seminal plasma and spermatozoa from infertile men with varicocele. Reproduction. 2002;123(3):411–417.
  • Hosseinpour E, Shahverdi A, Parivar K, et al. Sperm ubiquitination and DNA fragmentation in men with occupational exposure and varicocele. Andrologia. 2014;46(4):423–429.
  • Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3(4):243–252.
  • Sanchez V, Wistuba J, Mallidis C. Semen analysis: update on clinical value, current needs and future perspectives. Reproduction. 2013;146(6):R249-258.
  • Agarwal A, Durairajanayagam D, Halabi J, et al. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.
  • Nixon B, Bromfield EG, Dun MD, et al. The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition. Asian J Androl. 2015;17:568–573.
  • Bromfield EG, Aitken RJ, Anderson AL, et al. The impact of oxidative stress on chaperone-mediated human sperm-egg interaction. Hum Reprod. 2015;30(11):2597–2613.
  • Fu Q, Schoenhoff FS, Savage WJ, et al. Multiplex assays for biomarker research and clinical application: translational science coming of age. PROTEOMICS Clin. Appl. 2010;4(3):271–284.
  • Imai K, Koshiyama A, Nakata K. Towards clinical proteomics analysis. Biomed Chromatogr. 2011;25(1–2):59–64.
  • Margreitter C, Petrov D, Zagrovic B. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Res. 2013;41(Web Server issue):W422–6.
  • Bell AW, Deutsch EW, Au CE, et al.. HUPO Test Sample Working Group. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nature Methods. 2009;6(6):423–430.
  • Cooper TG, Yeung CH. Recent biochemical approaches to post-testicular, epididymal contraception. Hum Reprod Update. 1999;5(2):141–152.
  • Khole V. Epididymis as a target for contraception. Indian J Exp Biol. 2003;41(7):764–772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.