527
Views
17
CrossRef citations to date
0
Altmetric
Perspective

Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains

, , &
Pages 355-365 | Received 01 Dec 2015, Accepted 11 Feb 2016, Published online: 07 Mar 2016

References

  • Chen H, Liu Y, Zhao C, et al. Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One. 2013;8(6):e66880.
  • Kanaujia PK, Bajaj P, Kumar S, et al. Proteomic analysis of Yersinia enterocolitica biovar 1A under iron-rich and iron-poor conditions indicate existence of efficiently regulated mechanisms of iron homeostasis. J Proteomics. 2015;124:39–49.
  • Hempel K, Herbst F-A, Moche M, et al. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. J Proteome Res. 2011;10(4):1657–1666.
  • Bandow JE, Brötz H, Leichert LI, et al. Proteomic approach to understanding antibiotic action. Antimicrobial Agents Chemother. 2003;47(3):948–955.
  • Singh VK, Jayaswal RK, Wilkinson BJ. Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol Lett. 2001;199(1):79–84.
  • Overton IM, Graham S, Gould KA, et al. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC Syst Biol. 2011;5:68.
  • Tanca A, Palomba A, Pisanu S, et al. A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome. 2014;2(1):49.
  • Abraham PE, Giannone RJ, Xiong W, et al. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities. Curr Protocols Bioinformatics/Editoral Board, Andreas D. Baxevanis … [Et Al.]. 2014;46:13 26 11–13 26 14.
  • Bäsell K, Otto A, Junker S, et al. The phosphoproteome and its physiological dynamics in Staphylococcus aureus. IJMM. 2014;304(2):121–132.
  • Hempel K, Pané-Farré J, Otto A, et al. Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach. J Proteome Res. 2010;9(3):1579–1590.
  • Hessling B, Bonn F, Otto A, et al. Global proteome analysis of vancomycin stress in Staphylococcus aureus. IJMM. 2013;303(8):624–634.
  • Michalik S, Bernhardt J, Otto A, et al. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus. Mol Cell Proteomics. 2012;11(9):558–570.
  • Cordwell SJ, Larsen MR, Cole RT, et al. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology. 2002;148(Pt 9):2765–2781.
  • Liu X, Hu Y, Pai P-J, et al. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. J Proteome Res. 2014;13(3):1223–1233.
  • Savijoki K, Iivanainen A, Siljamäki P, et al. Genomics and proteomics provide new insight into the commensal and pathogenic lifestyles of bovine- and human-associated staphylococcus epidermidis strains. J Proteome Res. 2014;13:3748–3762.
  • Chong PM, Lynch T, McCorrister S, et al. Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One. 2014;9(1):e82622.
  • Bertin GI, Sabbagh A, Guillonneau F, et al. Differential protein expression profiles between Plasmodium falciparum parasites isolated from subjects presenting with pregnancy-associated malaria and uncomplicated malaria in Benin. J Infect Dis. 2013;208(12):1987–1997.
  • Solis N, Cain JA, Cordwell SJ. Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics. J Proteomics. 2016;130:190–199.
  • Williamson YM, Moura H, Whitmon J, et al. A proteomic characterization of bordetella pertussis clinical isolates associated with a california state pertussis outbreak. Int J Proteomics. 2015;2015:536537.
  • Pieper R, Gatlin-Bunai CL, Mongodin EF, et al. Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics. 2006;6(15):4246–4258.
  • Burlak C, Hammer CH, Robinson M-A, et al. Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol. 2007;9(5):1172–1190.
  • Schierloh P, Klepp L, Vazquez C, et al. Differential expression of immunogenic proteins on virulent Mycobacterium tuberculosis clinical isolates. Biomed Res Int. 2014;2014:1–13.
  • Doliwa C, Xia D, Escotte-Binet S, et al. Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE). Int J Parasitol. Drugs Drug Resistance. 2013;3:35–44.
  • Lenco J, Link M, Tambor V, et al. iTRAQ quantitative analysis of Francisella tularensis ssp. holarctica live vaccine strain and Francisella tularensis ssp. tularensis SCHU S4 response to different temperatures and stationary phases of growth. Proteomics. 2009;9(10):2875–2882.
  • Schnell G, Boeuf A, Jaulhac B, et al. Proteomic analysis of three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for Lyme vaccine design. Proteomics. 2015;15(7):1280–1290.
  • Sewell A, Dunmire J, Wehmann M, et al. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa. Mol Vis. 2014;20:1182–1191.
  • Hussain MA, Huygens F. Proteomic and bioinformatics tools to understand virulence mechanisms in staphylococcus aureus. Curr Proteomics. 2012;9(1):2–8.
  • Bocsanczy AM, Achenbach UC, Mangravita-Novo A, et al. Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics. 2014;15:280.
  • Zhang L, Xiao D, Pang B, et al. The core proteome and pan proteome of Salmonella Paratyphi A epidemic strains. PLoS One. 2014;9(2):e89197.
  • Ziebandt AK, Kusch H, Degner M, et al. Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics. 2010;10(8):1634–1644.
  • Betts JC, Dodson P, Quan S, et al. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology. 2000;146 Pt 12(Pt 12):3205–3216.
  • Tettelin H, Masignani V, Cieslewicz MJ, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Nat Acad Sci U S A. 2005;102(39):13950–13955.
  • Sugawara M, Epstein B, Badgley BD, et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 2013;14(2):R17.
  • Christie-Oleza JA, Pina-Villalonga JM, Bosch R, et al. Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria. Mol Cell Proteomics. 2012;11(2):M111.013110–M111.013110.
  • Selevsek N, Chang C-Y, Gillet LC, et al. Reproducible and Consistent Quantification of the Saccharomyces cerevisiae Proteome by SWATH-mass spectrometry. Mol Cell Proteomics. 2015;14:739–749.
  • Griffin PM, Price GR, Schooneveldt JM, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50(9):2918–2931.
  • Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. Bba-Proteins Proteom. 2015;1854(6):528–537.
  • Kostrzewa M, Sparbier K, Maier T, et al. MALDI-TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl. 2013;7(11–12):767–778.
  • Shao W, Zhang M, Lam H, et al. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation. Sci Rep. 2015;5:14337.
  • Karlsson R, Gonzales-Siles L, Boulund F, et al. Proteotyping: Proteomic characterization, classification and identification of microorganisms–A prospectus. Syst Appl Microbiol. 2015;38(4):246–257.
  • Pier GB. Will there ever be a universal Staphylococcus aureus vaccine? Hum Vacc Immunother. 2013;9(9):1865–1876.
  • Gibbs DL, Baratt A, Baric RS, et al. Protein co-expression network analysis (ProCoNA). J Clin Bioinformat. 2013;3(1):11.
  • Lilburn TG, Gu J, Cai H, et al. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics. 2010;11:369.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111.016717–O111.016717.
  • Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362.
  • UniProt C. Activities at the universal protein resource (UniProt). Nucleic Acids Res. 2014;42(Database issue):D191–198.
  • Suzek BE, Huang HZ, McGarvey P, et al. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23(10):1282–1288.
  • Deutsch EW, Mendoza L, Shteynberg D, et al. A guided tour of the trans-proteomic pipeline. Proteomics. 2010;10(6):1150–1159.
  • Kapp E, Schutz F. Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr Protocols Protein Sci. 2007;49:25.2.1–25.2.19.
  • Pevtsov S, Fedulova I, Mirzaei H, et al. Performance evaluation of existing de novo sequencing algorithms. J Proteome Res. 2006;5(11):3018–3028.
  • Callister SJ, McCue LA, Turse JE, et al. Comparative bacterial proteomics: analysis of the core genome concept. PLoS One. 2008;3(2):e1542.
  • Gallien S, Perrodou E, Carapito C, et al. Ortho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol. Genome Res. 2009;19(1):128–135.
  • Plewniak F, Bianchetti L, Brelivet Y, et al. PipeAlign: A new toolkit for protein family analysis. Nucleic Acids Res. 2003;31(13):3829–3832.
  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659.
  • AureoWiki - the repository of the Staphylococcus aureus research & annotation community [Internet]. University of Greifswald; 2014 [cited 2016 Feb 29]. Available from: http://aureowiki.med.uni-greifswald.de/download_orthologue_table
  • Chen F, Mackey AJ, Vermunt JK, et al. Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One. 2007;2(4):e383.
  • Gupta N, Benhamida J, Bhargava V, et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res. 2008;18(7):51133–51142.
  • Orthobench - publicly available benchmark protein ortholog sets [Internet]. European Molecular Biology Laboratory; 2011 [cited 2016 Feb 29]. Available from: http://eggnog.embl.de/orthobench2/
  • Zhang Y, Wen Z, Washburn MP, et al. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Analyt Chem. 2010;82(6):2272–2281.
  • Broadbent JA, Sampson DL, Broszczak DA, et al. Choose wisely: network, ontology and annotation resources for the analysis of Staphylococcus aureus omics data. Int J Med Microbiol. 2015;305:339–347.
  • Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.