918
Views
34
CrossRef citations to date
0
Altmetric
Review

Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives

, , , , &
Pages 367-381 | Received 15 Dec 2015, Accepted 26 Feb 2016, Published online: 16 Mar 2016

References

  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
  • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?. Nat Rev Cancer. 2012;12(5):323–334.
  • Petricoin EF, Zoon KC, Kohn EC, et al. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002;1(9):683–695.
  • Apweiler R, Aslanidis C, Deufel T, et al. Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin Chem Lab Med CCLM/FESCC. 2009;47(6):724–744.
  • Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics: a need to define the field and to begin to set adequate standards. PROTEOMICS-Clin Appl. 2007;1(2):148–156.
  • Mendelsohn J. Personalizing oncology: perspectives and prospects. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(15):1904–1911.
  • Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–2234.
  • National Research Council. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease [ Internet]. Washington, DC: National Academies Press; 2011. Available from: (http://www.nap.edu/catalog/13284/toward-precision-medicine-building-a-knowledge-network-for-biomedical-research).)
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795.
  • Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11(2):109–118.
  • Blau CA, Liakopoulou E. Can we deconstruct cancer, one patient at a time?. Trends Genet TIG. 2013;29(1):6–10.
  • Wisniewski JR, Dus K, Mann M. Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins. Proteomics Clin Appl. 2013;7(3–4):225–233.
  • Bauer JA, Chakravarthy AB, Rosenbluth JM, et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res. 2010;16(2):681–690.
  • Meding S, Balluff B, Elsner M, et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol. 2012;228(4):459–470.
  • Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics. Br J Cancer. 2014;110(7):1748–1758.
  • Gamez-Pozo A, Sanchez-Navarro I, Nistal M, et al. MALDI profiling of human lung cancer subtypes. PLoS One. 2009;4(11):e7731.
  • Kikuta K, Tochigi N, Saito S, et al. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics. Proteomics Clin Appl. 2010;4(5):560–567.
  • Tweedle EM, Khattak I, Ang CW, et al. Low molecular weight heat shock protein HSP27 is a prognostic indicator in rectal cancer but not colon cancer. Gut. 2010;59(11):1501–1510.
  • Wang LN, Tong SW, Hu HD, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem. 2012;113(12):3762–3772.
  • Heo SH, Lee SJ, Ryoo HM, et al. Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LC–MS/MS. Proteomics. 2007;7(23):4292–4302.
  • Zeng X, Hood BL, Sun M, et al. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J Proteome Res. 2010;9(12):6440–6449.
  • Kang SM, Sung HJ, Ahn JM, et al. The Haptoglobin beta chain as a supportive biomarker for human lung cancers. Mol Biosyst. 2011;7(4):1167–1175.
  • Pitteri SJ, Amon LM, Busald Buson T, et al. Detection of elevated plasma levels of epidermal growth factor receptor before breast cancer diagnosis among hormone therapy users. Cancer Res. 2010;70(21):8598–8606.
  • Murakoshi Y, Honda K, Sasazuki S, et al. Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray. Cancer Sci. 2011;102(3):630–638.
  • Chen YT, Chen CL, Chen HW, et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J Proteome Res. 2010;9(11):5803–5815.
  • True LD, Zhang H, Ye M, et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Modern Pathol. 2010;23(10):1346–1356.
  • Ang CS, Rothacker J, Patsiouras H, et al. Use of multiple reaction monitoring for multiplex analysis of colorectal cancer-associated proteins in human feces. Electrophoresis. 2011;32(15):1926–1938.
  • Ang CS, Nice EC. Targeted in-gel MRM: a hypothesis driven approach for colorectal cancer biomarker discovery in human feces. J Proteome Res. 2010;9(9):4346–4355.
  • Xiao H, Zhang L, Zhou H, et al. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteom MCP. 2012;11(2):M111 012112.
  • Zabron AA, Horneffer-Van Der Sluis VM, Wadsworth CA, et al. Elevated levels of neutrophil gelatinase-associated lipocalin in bile from patients with malignant pancreatobiliary disease. Am J Gastroenterol. 2011;106(9):1711–1717.
  • Desiderio C, D’Angelo L, Rossetti DV, et al. Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics. 2012;12(13):2158–2166.
  • Kosanam H, Makawita S, Judd B, et al. Mining the malignant ascites proteome for pancreatic cancer biomarkers. Proteomics. 2011;11(23):4551–4558.
  • Haslene-Hox H, Oveland E, Woie K, et al. Increased WD-repeat containing protein 1 in interstitial fluid from ovarian carcinomas shown by comparative proteomic analysis of malignant and healthy gynecological tissue. Biochim Biophys Acta. 2013;1834(11):2347–2359.
  • Dogan A. Advances in clinical applications of tissue proteomics: opportunities and challenges. Expert Rev Proteomics. 2014;11(5):531–533.
  • Casadonte R, Caprioli RM. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc. 2011;6(11):1695–1709.
  • Fowler CB, O’Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics. 2013;10(4):389–400.
  • Angel PM, Caprioli RM. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry. 2013;52(22):3818–3828.
  • Balluff B, Elsner M, Kowarsch A, et al. Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J Proteome Res. 2010;9(12):6317–6322.
  • Lindskog C. The potential clinical impact of the tissue-based map of the human proteome. Expert Rev Proteomics. 2015;12(3):213–215.
  • Xu BJ. Combining laser capture microdissection and proteomics: methodologies and clinical applications. Proteomics Clin Appl. 2010;4(2):116–123.
  • Imielinski M, Cha S, Rejtar T, et al. Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma reveals molecular features of tumorigenesis and clinical relapse. Mol Cell Proteom MCP. 2012;11(6):M111 014910.
  • Datta S, Malhotra L, Dickerson R, et al. Laser capture microdissection: Big data from small samples. Histol Histopathol. 2015;30(11):1255–1269.
  • Indovina P, Marcelli E, Pentimalli F, et al. Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrom Rev. 2013;32(2):129–142.
  • Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers–blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol. 2011;8(3):142–150.
  • Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5(13):3226–3245.
  • Villanueva J, Shaffer DR, Philip J, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest. 2006;116(1):271–284.
  • Liotta LA, Petricoin EF. Mass spectrometry-based protein biomarker discovery: solving the remaining challenges to reach the promise of clinical benefit. Clin Chem. 2010;56(10):1641–1642.
  • Gold L, Walker JJ, Wilcox SK, et al. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol. 2012;29(5):543–549.
  • Taguchi A, Hanash SM. Unleashing the power of proteomics to develop blood-based cancer markers. Clin Chem. 2013;59(1):119–126.
  • Gewinner C, Hart G, Zachara N, et al. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. J Biol Chem. 2004;279(5):3563–3572.
  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005;4(6):477–488.
  • Kyselova Z, Mechref Y, Kang P, et al. Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem. 2008;54(7):1166–1175.
  • Narayanasamy A, Ahn JM, Sung HJ, et al. Fucosylated glycoproteomic approach to identify a complement component 9 associated with squamous cell lung cancer (SQLC). J Proteomics. 2011;74(12):2948–2958.
  • Tsai HY, Boonyapranai K, Sriyam S, et al. Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics. 2011;11(11):2162–2170.
  • Pang WW, Abdul-Rahman PS, Wan-Ibrahim WI, et al. Can the acute-phase reactant proteins be used as cancer biomarkers?. Int J Biol Markers. 2010;25(1):1–11.
  • Sung HJ, Ahn JM, Yoon YH, et al. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J Proteome Res. 2011;10(3):1383–1395.
  • Sanchez-Carbayo M. Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2010;31(2):103–112.
  • Reumer A, Maes E, Mertens I, et al. Colorectal cancer biomarker discovery and validation using LC–MS/MS-based proteomics in blood: truth or dare?. Expert Rev Proteomics. 2014;11(4):449–463.
  • Ray S, Reddy PJ, Jain R, et al. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics. 2011;11(11):2139–2161.
  • Tan HT, Lee YH, Chung MC. Cancer proteomics. Mass Spectrom Rev. 2012;31(5):583–605.
  • Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics. 2005;5(13):3262–3277.
  • Omenn GS. Advancement of biomarker discovery and validation through the HUPO plasma proteome project. Dis Markers. 2004;20(3):131–134.
  • Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics. 2010;10(4):731–748.
  • Ladd J, Taylor AD, Piliarik M, et al. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem. 2009;393(4):1157–1163.
  • Lee SJ, Youn BS, Park JW, et al. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem. 2008;80(8):2867–2873.
  • Lausted C, Hu Z, Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteom MCP. 2008;7(12):2646–2474.
  • Okuno J, Maehashi K, Kerman K, et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron. 2007;22(9–10):2377–2381.
  • Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23(10):1294–1301.
  • Srivastava S, LaBaer J. Nanotubes light up protein arrays. Nat Biotechnol. 2008;26(11):1244–1246.
  • Zhu H, Dale PS, Caldwell CW, et al. Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal Chem. 2009;81(24):9858–9865.
  • Washburn AL, Gunn LC, Bailey RC. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem. 2009;81(22):9499–9506.
  • Von Muhlen MG, Brault ND, Knudsen SM, et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem. 2010;82(5):1905–1910.
  • Ang CS, Rothacker J, Patsiouras H, et al. Murine fecal proteomics: a model system for the detection of potential biomarkers for colorectal cancer. J Chromatogr A. 2010;1217(19):3330–3340.
  • Hu S, Loo JA, Wong DT. Human saliva proteome analysis and disease biomarker discovery. Expert Rev Proteomics. 2007;4(4):531–538.
  • Mannello F, Ligi D. Resolving breast cancer heterogeneity by searching reliable protein cancer biomarkers in the breast fluid secretome. BMC Cancer. 2013;13:344.
  • Rodriguez-Pineiro AM, Blanco-Prieto S, Sanchez-Otero N, et al. On the identification of biomarkers for non-small cell lung cancer in serum and pleural effusion. J Proteomics. 2010;73(8):1511–1522.
  • Nilsson T, Mann M, Aebersold R, et al. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods. 2010;7(9):681–685.
  • Wu FX, Ressom H, Dunn MJ. Focus on bioinformatics in proteomics. Proteomics. 2013;13(2):219–220.
  • Grebe SK, Singh RJ. LC–MS/MS in the Clinical Laboratory - Where to From Here?. Clin Biochem Rev Aust Assoc Clin Biochemists. 2011;32(1):5–31.
  • Chen G, Pramanik BN. Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today. 2009;14(9–10):465–471.
  • Picotti P, Bodenmiller B, Mueller LN, et al. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell. 2009;138(4):795–806.
  • Hoofnagle AN, Becker JO, Oda MN, et al. Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin Chem. 2012;58(4):777–781.
  • Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods. 2013;10(1):28–34.
  • Huttenhain R, Soste M, Selevsek N, et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med. 2012;4(142):142ra194.
  • Whiteaker JR, Lin C, Kennedy J, et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol. 2011;29(7):625–634.
  • Pan S, Chen R, Brand RE, et al. Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J Proteome Res. 2012;11(3):1937–1948.
  • Percy AJ, Chambers AG, Yang J, et al. Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics. 2013;13(14):2202–2215.
  • Kitteringham NR, Jenkins RE, Lane CS, et al. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1229–1239.
  • Selevsek N, Matondo M, Sanchez Carbayo M, et al. Systematic quantification of peptides/proteins in urine using selected reaction monitoring. Proteomics. 2011;11(6):1135–1147.
  • Keshishian H, Addona T, Burgess M, et al. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteom MCP. 2007;6(12):2212–2229.
  • Addona TA, Abbatiello SE, Schilling B, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol. 2009;27(7):633–641.
  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–566.
  • Fortin T, Salvador A, Charrier JP, et al. Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteom MCP. 2009;8(5):1006–1015.
  • Peng J, Elias JE, Thoreen CC, et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003;2(1):43–50.
  • Dams R, Huestis MA, Lambert WE, et al. Matrix effect in bio-analysis of illicit drugs with LC–MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom. 2003;14(11):1290–1294.
  • Gros M, Petrović M, Barceló D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta. 2006;70(4):678–690.
  • Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev. 2005;24(2):168–200.
  • Zhou L, Li Q, Wang J, et al. Oncoproteomics: Trials and Tribulations. Proteomics Clin Appl. 2015.
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.
  • Cramer R, Gobom J, Nordhoff E. High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2005;2(3):407–420.
  • Rodrigo MAM, Zitka O, Krizkova S, et al. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–255.
  • Cho YT, Su H, Wu WJ, et al, Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem. 2015;69:209–254.
  • Pusch W, Kostrzewa M. Application of MALDI-TOF mass spectrometry in screening and diagnostic research. Curr Pharm Des. 2005;11(20):2577–2591.
  • Castellino S, Groseclose MR, Wagner D. MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis. 2011;3(21):2427–2441.
  • Cho Y-T, Su H, Huang T-L, et al Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry for clinical diagnosis. Clin Chim Acta. 2013;415:266–275.
  • Iwadate Y. Clinical proteomics in cancer research-promises and limitations of current two-dimensional gel electrophoresis. Curr Med Chem. 2008;15(23):2393–2400.
  • Roman E, Lunde MLS, Miron T, et al. Analysis of protein expression profile of oral squamous cell carcinoma by MALDI-TOF-MS. Anticancer Res. 2013;33(3):837–845.
  • Spengler B. Mass spectrometry imaging of biomolecular information. Anal Chem. 2015;87(1):64–82.
  • Gromov P, Moreira JMA, Gromova I. Proteomic analysis of tissue samples in translational breast cancer research. Expert Rev Proteomics. 2014;11(3):285–302.
  • Rauser S, Deininger S-O, Suckau D, et al. Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev Proteomics. 2010;7(6):927–941.
  • Cazares LH, Troyer DA, Wang B, et al. MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem. 2011;401(1):17–27.
  • Schwamborn K. Imaging mass spectrometry in biomarker discovery and validation. J Proteomics. 2012;75(16):4990–4998.
  • Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry—looking beyond classical histology. Nat Rev Cancer. 2010;10(9):639–646.
  • Meding S, Nitsche U, Balluff B, et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res. 2012;11(3):1996–2003.
  • Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry in cancer research: combining proteomic profiling and histological evaluation. Clin Biochem. 2013;46(6):539–545.
  • Balluff B, Schöne C, Höfler H, et al. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol. 2011;136(3):227–244.
  • Minerva L, Clerens S, Baggerman G, et al. Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics. 2008;8(18):3763–3774.
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–999.
  • Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteom MCP. 2004;3(12):1154–1169.
  • Geiger T, Wisniewski JR, Cox J, et al. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc. 2011;6(2):147–157.
  • DeSouza L, Diehl G, Rodrigues MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005;4(2):377–386.
  • Burkhart JM, Vaudel M, Zahedi RP, et al. iTRAQ protein quantification: A quality‐controlled workflow. Proteomics. 2011;11(6):1125–1134.
  • Pierce A, Unwin RD, Evans CA, et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics. 2008;7(5):853–863.
  • Zieske LR. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J Exp Bot. 2006;57(7):1501–1508.
  • Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006;7(12):952–958.
  • Ong S-E, Mann M. Mass spectrometry–based proteomics turns quantitative. Nat Chem Biol. 2005;1(5):252–262.
  • Marimuthu A, Subbannayya Y, Sahasrabuddhe NA, et al. SILAC‐based quantitative proteomic analysis of gastric cancer secretome. PROTEOMICS-Clin Appl. 2013;7(5–6):355–366.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–965.
  • Xie F, Liu T, Qian W-J, et al. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–25449.
  • Levin Y, Schwarz E, Wang L, et al. Label-free LC–MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci. 2007;30(14):2198–2203.
  • Acosta-Martin AE, Lane L. Combining bioinformatics and MS-based proteomics: clinical implications. Expert Rev Proteomics. 2014;11(3):269–284.
  • Neilson KA, Ali NA, Muralidharan S, et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 2011;11(4):535–553.
  • Zhang B, VerBerkmoes NC, Langston MA, et al. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5(11):2909–2918.
  • Pham TV, Piersma SR, Oudgenoeg G, et al. Label-free mass spectrometry-based proteomics for biomarker discovery and validation. Expert Rev Mol Diagn. 2012;12(4):343–359.
  • Orchard S. Data standardization and sharing—the work of the HUPO-PSI. Biochim Biophys Acta (BBA)-Proteins Proteom. 2014;1844(1):82–87.
  • Turewicz M, Deutsch EW Spectra, chromatograms, metadata: mzML-the standard data format for mass spectrometer output. In: Data mining in proteomics. Springer; 2011. p. 179–203.
  • Walzer M, Qi D, Mayer G, et al. The mzQuantML data standard for mass spectrometry–based quantitative studies in proteomics. Mol Cell Proteomics. 2013;12(8):2332–2340.
  • Field HI, Fenyo D, Beavis RC. RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics. 2002;2(1):36.
  • Srinivas PR, Verma M, Zhao Y, et al. Proteomics for cancer biomarker discovery. Clin Chem. 2002;48(8):1160–1169.
  • Kim H, Kim K, Yu SJ, et al. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PLoS One. 2012;8(5):e63468.
  • Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem Biol. 2012;19(1):72–84.
  • Liu Y, Guo M. Chemical proteomic strategies for the discovery and development of anticancer drugs. Proteomics. 2014;14(4–5):399–411.
  • Sutton CW. The role of targeted chemical proteomics in pharmacology. Br J Pharmacol. 2012;166(2):457–475.
  • Yuan K, Lei Y, Huang C. Application of chemistry-based functional proteomics to screening for novel drug targets. Comb Chem High Throughput Screen. 2010;13(5):414–421.
  • Wang K, Yang T, Wu Q, et al. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics. 2012;9(3):293–310.
  • Rix U, Superti-Furga G. Target profiling of small molecules by chemical proteomics. Nat Chem Biol. 2009;5(9):616–624.
  • Bello E, Colella G, Scarlato V, et al. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71(4):1396–1405.
  • Colzani M, Noberini R, Romanenghi M, et al. Quantitative chemical proteomics identifies novel targets of the anti-cancer multi-kinase inhibitor E-3810. Mol Cell Proteom MCP. 2014;13(6):1495–1509.
  • Sartippour MR, Seeram NP, Heber D, et al. Rabdosia rubescens inhibits breast cancer growth and angiogenesis. Int J Oncol. 2005;26(1):121–127.
  • Dal Piaz F, Cotugno R, Lepore L, et al. Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells. J Proteomics. 2013;82:14–26.
  • Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294–297.
  • Celis JE, Gromov P, Cabezón T, et al. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment A novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 2004;3(4):327–344.
  • Rauser S, Marquardt C, Balluff B, et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res. 2010;9(4):1854–1863.
  • Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New Engl J Med. 2005;353(16):1673–1684.
  • Cohen AA, Geva-Zatorsky N, Eden E, et al. Dynamic proteomics of individual cancer cells in response to a drug. Science. 2008;322(5907):1511–1516.
  • Ortiz PA, Bruno ME, Moore T, et al. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles. J Proteome Res. 2010;9(3):1268–1278.
  • Klein O, Rohwer N, De Molina KF, et al. Application of two-dimensional gel-based mass spectrometry to functionally dissect resistance to targeted cancer therapy. Proteomics Clin Appl. 2013;7(11-12):813–824.
  • Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2012;148(6):1293–1307.
  • Caudle KE, Klein TE, Hoffman JM, et al. Incorporation of pharmacogenomics into routine clinical practice: the clinical pharmacogenetics implementation consortium (CPIC) guideline development process. Curr Drug Metab. 2014;15(2):209–217.
  • McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–2350.
  • Britton LM, Sova P, Belisle S, et al. A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics. 2014;14(19):2226–2230.
  • Marino G, Eckhard U, Overall CM. Protein termini and their modifications revealed by positional proteomics. ACS Chem Biol. 2015;10(8):1754–1764.
  • Rogers LD, Overall CM. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteom MCP. 2013;12(12):3532–3542.
  • Eckhard U, Marino G, Butler GS, et al. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie. 2016;122:110–118.
  • Nishi A, Milner DA Jr., Giovannucci EL, et al. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn. 2016;16(1):11–23.
  • Ogino S, Chan AT, Fuchs CS, et al. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411.
  • Ogino S, Lochhead P, Chan AT, et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Modern Pathol. 2013;26(4):465–484.
  • Ogino S, Nosho K, Meyerhardt JA, et al. Cohort study of fatty acid synthase expression and patient survival in colon cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(35):5713–5720.
  • Ogino S, Campbell PT, Nishihara R, et al. Proceedings of the second international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control. 2015;26(7):959–972.
  • Kikuchi T, Carbone DP. Proteomics analysis in lung cancer: challenges and opportunities. Respirology. 2007;12(1):22–28.
  • Pawa N, Wright JM, Arulampalam TH. Mass spectrometry based proteomic profiling for pancreatic cancer. JOP J Pancreas. 2010;11(5):423–426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.