299
Views
3
CrossRef citations to date
0
Altmetric
Review

Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level

, &
Pages 481-493 | Received 20 Jan 2016, Accepted 29 Mar 2016, Published online: 25 Apr 2016

References

  • Weinberg R. The biology of cancer. New York (NY): Garland Science; 2013.
  • Galán JE. Common themes in the design and function of bacterial effectors. Cell Host Microbe. 2009;5(6):571–579.
  • Munter S, Way M, Frischknecht F. Signaling during pathogen infection. Sci Signal. 2006;2006(335):re5.
  • Pizarro-Cerdá J, Cossart P. Bacterial adhesion and entry into host cells. Cell. 2006;124(4):715–727.
  • Gori JL, Hsu PD, Maeder ML, et al. Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015;26(7):443–451.
  • Kuo C-L, Oyler GA, Shoemaker CB. Accelerated neuronal cell recovery from botulinum neurotoxin intoxication by targeted ubiquitination. Plos One. 2011;6(5):e20352.
  • Haruki H, Nishikawa J, Laemmli UK. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell. 2008;31(6):925–932.
  • Williams DJ, Puhl HL, Ikeda SR, et al. Rapid modification of proteins using a rapamycin-inducible tobacco etch virus protease system. Plos One. 2009;4(10):e7474–e7474.
  • Tsuchiya H, Arai N, Tanaka K, et al. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2013;436(3):372–376.
  • Geisberg JV, Moqtaderi Z, Fan X, et al. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. 2014;156(4):812–824.
  • Meinema AC, Laba JK, Hapsari RA, et al. Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science. 2011;333(6038):90–93.
  • Schulz D, Schwalb B, Kiesel A, et al. Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell. 2013;155(5):1075–1087.
  • Robinson MS, Sahlender DA, Foster SD. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell. 2010;18(2):324–331.
  • Wong KH, Struhl K. The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev. 2011;25(23):2525–2539.
  • Berchtold D, Piccolis M, Chiaruttini N, et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol. 2012;14(5):542–547.
  • Walther TC, Brickner JH, Aguilar PS, et al. Eisosomes mark static sites of endocytosis. Nature. 2006;439(7079):998–1003.
  • Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res. 1999;59(4):886–894.
  • Grusch M, Schelch K, Riedler R, et al. Spatio‐temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 2014;33(15):1713–1726.
  • Wend S, Wagner HJ, Müller K, et al. Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol. 2013;3(5):280–285.
  • Toettcher JE, Gong D, Lim WA, et al. Light-based feedback for controlling intracellular signaling dynamics. Nat Methods. 2011;8(10):837–839.
  • Karginov AV, Ding F, Kota P, et al. Engineered allosteric activation of kinases in living cells. Nat Biotechnol. 2010;28(7):743–747.
  • Muthuswamy SK, Gilman M, Brugge JS. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol. 1999;19(10):6845–6857.
  • Farrar MA, Alberola-Lla J, Perlmutter RM. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 1996;383(6596):178–181.
  • Beyer HM, Juillot S, Herbst K, et al. Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish. ACS Synth Biol. 2015;4(9):951–958.
  • Strickland D, Lin Y, Wagner E, et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods. 2012;9(4):379–384.
  • Niopek D, Benzinger D, Roensch J et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nature communications. 2014 5.
  • Spiltoir JI, Strickland D, Glotzer M, et al. Optical control of peroxisomal trafficking. ACS synthetic biology. 2015.
  • Van Bergeijk P, Adrian M, Hoogenraad CC, et al. Optogenetic control of organelle transport and positioning. Nature. 2015;518(7537):111–114.
  • Taslimi A, Vrana JD, Chen D et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nature communications. 2014 5. 4925
  • Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234(4773):179–186.
  • Fleishman SJ, Whitehead TA, Ekiert DC, et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science. 2011;332(6031):816–821.
  • Regan L, Caballero D, Hinrichsen MR, et al. Protein design: past, present and future. Pept Sci. 2015;104:334–350.
  • Caballero D, Määttä J, Zhou AQ, et al. Intrinsic α‐helical and β‐sheet conformational preferences: a computational case study of alanine. Protein Sci. 2014;23(7):970–980.
  • Ahmad ZA, Yeap SK, Ali AM, et al. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:1–15.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797.
  • Bloom L, Calabro V. FN3: a new protein scaffold reaches the clinic. Drug Discov Today. 2009;14(19):949–955.
  • Binz HK, Amstutz P, Kohl A, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004;22(5):575–582.
  • Tamaskovic R, Simon M, Stefan N, et al. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzymol. 2012;503:101–134.
  • Dreier B, Plückthun A Ribosome display: a technology for selecting and evolving proteins from large libraries. In: Daniel JP, editor. PCR protocols. Methods in molecular Biology, Vol. 687. Springer; 2011. p. 283–306.
  • Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods. 2013;60(1):15–26.
  • Sidhu SS, Lowman HB, Cunningham BC, et al. Phage display for selection of novel binding peptides. Methods Enzymol. 2000;328:333.
  • Speltz EB, Nathan A, Regan L. Design of protein–peptide interaction modules for assembling supramolecular structures in vivo and in vitro. ACS Chem Biol. 2015;10(9):2108–2115.
  • Thrower JS, Hoffman L, Rechsteiner M, et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19(1):94–102.
  • Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280(1):1–9.
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–848.
  • Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009;49:223–241.
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discovery. 2004;3(4):301–317.
  • Yi F, Zhu P, Southall N, et al. An AlphaScreen™-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen. 2009;14:273–281.
  • Yi F, Regan L. A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol. 2008;3(10):645–654.
  • Sawyer N, Gassaway BM, Haimovich AD, et al. Designed phosphoprotein recognition in Escherichia coli. ACS Chem Biol. 2014;9(11):2502–2507.
  • Renicke C, Schuster D, Usherenko S, et al. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol. 2013;20(4):619–626.
  • Zelphati O, Wang Y, Kitada S, et al. Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. 2001;276(37):35103–35110.
  • Hasadsri L, Kreuter J, Hattori H, et al. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. 2009;284(11):6972–6981.
  • Erazo-Oliveras A, Najjar K, Dayani L, et al. Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods. 2014;11(8):861–867.
  • Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009;43:265–285.
  • Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):441–445.
  • Nishimura K, Fukagawa T, Takisawa H, et al. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods. 2009;6(12):917–922.
  • Havens KA, Guseman JM, Jang SS, et al. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol. 2012;160(1):135–142.
  • Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell biol. 2004;5(9):739–751.
  • Shin YJ, Park SK, Jung YJ, et al. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. Sci Rep. 2015;5:14269.
  • Portnoff AD, Stephens EA, Varner JD, et al. Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing. J Biol Chem. 2014;289(11):7844–7855.
  • Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol. 2012;19(1):117–121.
  • Vecchi L, Petris G, Bestagno M, et al. Selective targeting of proteins within secretory pathway for endoplasmic reticulum-associated degradation. J Biol Chem. 2012;287(24):20007–20015.
  • Paganetti P, Calanca V, Galli C, et al. β-site specific intrabodies to decrease and prevent generation of Alzheimer’s Aβ peptide. J Cell Biol. 2005;168(6):863–868.
  • Beatty WL. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci. 2006;119(2):350–359.
  • Bernal-Bayard J, Cardenal-Muñoz E, Ramos-Morales F. The Salmonella type III secretion effector, salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3. J Biol Chem. 2010;285(21):16360–16368.
  • Rakhit R, Navarro R, Wandless TJ. Chemical biology strategies for posttranslational control of protein function. Chem Biol. 2014;21(9):1238–1252.
  • Fan X, Jin WY, Lu J, et al. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17(3):471–480.
  • Heitz F, Morris MC, Divita G. Twenty years of cell‐penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157(2):195–206.
  • Morris MC, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19(12):1173–1176.
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–114.
  • Henshall DC, Araki T, Schindler CK, et al. Expression of death‐associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J Neurochem. 2003;86(5):1260–1270.
  • McNeill H, Woodgett JR. When pathways collide: collaboration and connivance among signalling proteins in development. Nat Rev Mol Biol. 2010;11(6):404–413.
  • Rowlinson SW, Yoshizato H, Barclay JL, et al. An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat Cell Biol. 2008;10(6):740–747.
  • Czyzyk J, Brogdon JL, Badou A, et al. Activation of CD4 T cells by Raf-independent effectors of Ras. Proc Natl Acad Sci. 2003;100(10):6003–6008.
  • Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Investig. 1999;104(2):155.
  • LeBlanc H, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003;10(1):66–75.
  • van der Sloot AM, Tur V, Szegezdi E, et al. Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci. 2006;103(23):8634–8639.
  • Yeh JT-H, Binari R, Gocha T, et al. PAPTi: a peptide aptamer interference toolkit for perturbation of protein-protein interaction networks. Sci Rep. 2013;3:1156.
  • Amstutz P, Binz HK, Parizek P, et al. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem. 2005;280(26):24715–24722.
  • Cortajarena AL, Liu TY, Hochstrasser M, et al. Designed proteins to modulate cellular networks. ACS Chem Biol. 2010;5(6):545–552.
  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature. 2007;450(7172):1001–1009.
  • Chen J, Sawyer N, Regan L. Protein–protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci. 2013;22(4):510–515.
  • Rizk SS, Luchniak A, Uysal S, et al. An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc Natl Acad Sci. 2009;106(27):11011–11015.
  • Gabel CA, Foster SA. Mannose 6-phosphate receptor-mediated endocytosis of acid hydrolases: internalization of beta-glucuronidase is accompanied by a limited dephosphorylation. J Cell Biol. 1986;103(5):1817–1827.
  • Pan C, Lu B, Chen H, et al. Reprogramming human fibroblasts using HIV-1 TAT recombinant proteins OCT4, SOX2, KLF4 and c-MYC. Mol Biol Rep. 2010;37(4):2117–2124.
  • Cai S-R, Xu G, Becker-Hapak M, et al. The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci. 2006;27(4):311–319.
  • Caron NJ, Torrente Y, Camirand G, et al. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. 2001;3(3):310–318.
  • Park H-S, Hohn MJ, Umehara T, et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science. 2011;333(6046):1151–1154.
  • Chung HK, Jacobs CL, Huo Y, et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol. 2015;11:713–720.
  • Banaszynski LA, Chen L-C, Maynard-Smith LA, et al. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell. 2006;126(5):995–1004.
  • Dohmen RJ, Wu P, Varshavsky A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science. 1994;263(5151):1273–1276.
  • Labib K, Tercero JA, Diffley JF. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science. 2000;288(5471):1643–1647.
  • Janse DM, Crosas B, Finley D, et al. Localization to the proteasome is sufficient for degradation. J Biol Chem. 2004;279(20):21415–21420.
  • Su Y, Ishikawa S, Kojima M, et al. Eradication of pathogenic β-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc Natl Acad Sci. 2003;100(22):12729–12734.
  • Zhang J, Zheng N, Zhou P. Exploring the functional complexity of cellular proteins by protein knockout. Proc Natl Acad Sci. 2003;100(24):14127–14132.
  • Zhou P, Bogacki R, McReynolds L, et al. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell. 2000;6(3):751–756.
  • Cong F, Zhang J, Pao W, et al. A protein knockdown strategy to study the function of β-catenin in tumorigenesis. BMC Mol Biol. 2003;4(1):10.
  • Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci. 2001;98(15):8554–8559.
  • Schneekloth JS, Fonseca FN, Koldobskiy M, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc. 2004;126(12):3748–3754.
  • Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell biol. 2006;7(3):165–176.
  • Gupta S, Schoer RA, Egan JE, et al. Inducible reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A. 2004;101(7):1927–1932.
  • Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006;34(1):322–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.