223
Views
21
CrossRef citations to date
0
Altmetric
Review

Optimization of protein expression systems for modern drug discovery

, &
Pages 67-78 | Published online: 09 Jan 2014

References

  • McPherson A. Protein crystallization in the structural genomics era. J. Struct. Funct. Genomics5(1–2), 3–12 (2004).
  • Mayr LM. Tackling the chemo-genomic space by novel screening technologies: monograph of ESRF Workshop 58. In: Chemical Genomics: Small Molecule Probes to Study Cellular Function. Jaroch S, Weinmann H (Eds.), Springer Verlag, Weinheim, Germany, 111–173 (2006).
  • Christendat D, Yee A, Dharamsi A et al. Structural proteomics of an archaeon. Nature Struct. Biol.7, 903–909 (2000).
  • Roodveldt C, Aharoni A, Tawfik DS. Directed evolution of proteins for heterologous expression and stability. Curr. Opin. Struct. Biol.15, 50–56 (2005).
  • Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol.60, 523–533 (2003).
  • Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins. Protein Expr. Purif.43, 1–9 (2005).
  • Sorensen HP, Sperling-Petersen HU, Mortensen KK. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif.32, 252–259 (2003).
  • Kohli BM, Ostermeier C. A rubredoxin based system for screening of protein expression conditions and on-line monitoring of the purification process. Protein Expr. Purif.28, 362–367 (2003).
  • Liu Y, Zhao TJ, Yan YB, Zhou HM. Increase of soluble expression in Escherichia coli cytoplasm by a protein disulfide isomerase gene fusion system. Protein Expr. Purif.44, 155–161 (2005).
  • Chatterjee DK, Esposito D. Enhanced soluble protein expression using two new fusion tags. Protein Expr. Purif.46, 122–129 (2006).
  • Hammarström M, Hellgren N, Van der Berg S et al. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli.Prot. Sci.11, 313–321 (2002).
  • Shih YP, Kung WM, Chen JC et al. High-throughput screening of soluble recombinant proteins Prot. Sci.11, 1714–1719 (2002).
  • Davis GD, Elisee C, Newham DM, Harrison RG. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotech. Bioeng.65, 382–388 (1999).
  • Dyson MR, Shadbolt PS, Vincent KJ et al. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology4, 32 (2004).
  • Nallamsetty S, Waugh DS. Solubility-enhancing protein MBP and NusA play a passive role in the folding of their fusion partner. Protein Expr. Purif.45, 175–182 (2006).
  • Bach H, Mazor Y, Shaky S et al. Escherichia coli maltose binding protein as a molecular chaperone for recombinant intracellular single-chain antibodies. J. Mol. Biol.312, 79–93 (2001).
  • Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif.48, 1–13 (2006).
  • Qing G, Ma L-C, Khorchid A et al. Cold-shock induced high-yield expression protein production in Escherichia coli. Nat. Biotechnol.22, 877–882 (2004).
  • Nishihiara K, Kanemori M, Kitagawa M et al. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisted refolding of an allergen from Japanese cedar pollen, Cryi2, in Escherichia coli. Appl. Environ. Microbiol.64, 1694–1699 (1999).
  • Xu Y, Weng CL, Narayanan N et al. Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli. Appl. Environ. Microbiol.71, 6247–6253 (2005).
  • Sung-Gun K, Dae-Hyuk K, Dae-Hee L et al. Coexpression of folding accessory proteins for production of active cyclodextrin glycosyltransferase of Bacillus macerans in recombinant Escherichia coli. Protein Expr. Purif.41, 426–432 (2005).
  • Ferrer M, Chernikova TN, Yakimov MM et al. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol.21, 1266–1267 (2003).
  • Strocchi M, Ferrer M, Timmis KN, Golyshin PN. Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics6, 193–206 (2006).
  • Braun P, Ju Y, Halleck A et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA99, 2654–2659 (2002).
  • Knaust RKC, Nordlund P. Screening for soluble expression of recombinant proteins in a 96-well format. Anal. Biochem.297, 79–85 (2001).
  • Scheich C, Leitner D, Sievert V et al. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis. BMC Struct. Biol.4, 4 (2004).
  • Lin CT, Moore PA, Auberry DL et al. Automated purification of recombinant proteins: combining high-throughput with high yield. Protein Expr. Purif.47, 16–24 (2006).
  • Tobbell DA, Middleton BJ, Raines S et al. Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr. Purif.24, 242–252 (2002).
  • Vincentelli R, Canaan S, Campanacci V et al. High-throughput automated refolding screening of inclusion bodies. Prot. Sci.22, 2782–2792 (2004).
  • Willis MS, Hogan JK, Prabhakar P et al. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Prot. Sci.14, 1818–1826 (2005).
  • Altamirano MM, Consuelo G, Possani LD, Fersht AR. Oxidative refolding chromatography of the scorpion toxin Cn5. Nat. Biotechnol.17, 187–191 (1999).
  • Gao YG, Guan YX, Yao SJ, Cho MG. On-column refolding of recombinant human interferon-γ with an immobilized chaperone fragment. Biotechn. Prog.19, 915–920 (2003).
  • SchonerBE, Bramlett KS, Guo H, Burris TP. Reconstitution of functional nuclear receptor proteins using high pressure refolding. Mol. Gen. Metabol.84, 318–322 (2005).
  • Lee SH, Carpenter JF, Chang BS et al. Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Prot. Sci.15, 304–313 (2006).
  • Ikonomou L, Schneider YJ, Agathos SN. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol.62, 1–20 (2003).
  • Philipps B, Forstner M, Mayr LM. Baculovirus expression system for magnetic sorting of infected cells and enhanced titer determination. Biotechniques36, 80–83 (2004).
  • Philipps B, Rotmann D, Wicki M et al. Time reduction and process optimization of the baculovirus expression system for more efficient recombinant protein production in insect cells. Protein Expr. Purif.42, 211–218 (2005).
  • Chen YJ, Chen WS, Wu TY. Development of a bicistronic baculovirus expression vector by the Rhopalosiphum padi virus 5´ internal ribosome entry site. Biochem. Biophys. Res. Commun.335, 616–623 (2005).
  • Berger I, Fitzgerald DJ, Richmond TJ. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol.22, 1583–1587 (2004).
  • Jarvis DL. Developing baculovirus–insect cell expression systems for humanized recombinant glycoprotein production. Virology310, 1–7 (2003).
  • Philipps B, Forstner M, Mayr LM. A baculovirus expression vector system for simultaneous protein expression in insect and mammalian cells. Biotechnol. Prog.21, 708–711 (2005).
  • Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol.23, 567–575 (2005).
  • McCall EJ, Danielsson A, Hardern IM et al. Improvements to the throughput of recombinant protein expression in the baculovirus/insect cell system. Protein Expr. Purif.42, 29–36 (2005).
  • Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif.40, 1–22 (2005).
  • Bahia D, Cheung R, Buchs M et al. Optimisation of insect cell growth in deep-well blocks: development of a high-throughput insect cell expression screen. Protein Expr. Purif.39, 61–70 (2005).
  • MassieB, Dionne J, Lamarche N et al. Improved adenovirus vector provides herpes simplex virus ribonucleotide reductase R1 and R2 subunits very efficiently. Biotechnology (NY)13, 602–608 (1995).
  • Garnier A, Cote J, Nadeau I et al. Scale up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology15, 145–155 (1994).
  • Pialoux G, Excler JL, Riviere Y et al. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). AIDS Res. Hum. Retroviruses11, 373–381 (1995).
  • Falkner FG, Turecek PL, MacGillivray RT et al. High level expression of active human prothrombin in a vaccinia virus expression system. Thromb. Haemost.68, 119–124 (1992).
  • Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY)9, 1356–1361 (1991).
  • LundstromK. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta1610, 90–96 (2003).
  • Hassaine G, Wagner R, Kempf J et al. Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr. Purif.45, 343–351 (2006).
  • Lundstrom K. Semliki Forest virus vectors for large-scale production of recombinant proteins. Methods Mol. Med.76, 525–543 (2003).
  • Geisse S, Henke M. Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J. Struct. Funct. Genomics6, 165–170 (2005).
  • Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM. The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol. Bioeng.93, 829–835 (2006).
  • Beer C, Buhr P, Hahn H et al. Gene expression analysis of murine cells producing amphotropic mouse leukaemia virus at a cultivation temperature of 32 and 37 degrees C. J. Gen. Virol.84, 1677–1686 (2003).
  • Ivanova L, Brandli J, Saudan P, Bachmann MF. Hybrid Sindbis/Epstein-Barr virus episomal expression vector for inducible production of proteins. Biotechniques39, 209–212 (2005).
  • Kigawa T, Yabuki T, Yoshida Y et al. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett.442, 15–19 (1999).
  • Yokoyama S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol.7, 39–43 (2003).
  • Yee A, Chang X, Pineda-Lucena A et al. An NMR approach to structural proteomics. Proc. Natl Acad. Sci. USA99, 1825–1830 (2002).
  • Guignard L, Ozawa K, Pursglove SE et al. NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Lett.524, 159–162 (2002).
  • Elbaz Y, Steiner-Mordoch S, Danieli T, Schuldiner S. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc. Natl Acad. Sci. USA101, 1519–1524 (2004).
  • Hendrickson WA, Horton JR, LeMaster DM. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J.9, 1665–1672 (1990).
  • Kigawa T, Yamaguchi-Nunokawa E, Kodama K et al. Selenomethionine incorporation into a protein by cell-free synthesis. J. Struct. Funct. Genomics2, 29–35 (2002).
  • Shimizu Y, Inoue A, Tomari Y et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol.19, 751–755 (2001).
  • He M, Taussig MJ. DiscernArray technology: a cell-free method for the generation of protein arrays from PCR DNA. J. Immunol. Methods274, 265–270 (2003).
  • Jiang X, Ookubo Y, Fujii I et al. Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS Lett.514, 290–294 (2002).
  • Sawasaki T, Ogasawara T, Morishita R, Endo Y. A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl Acad. Sci. USA99, 14652–14657 (2002).
  • Tymms MJ (Ed.) In vitro transcription and translation protocols. In: Methods in Molecular Biology. Vol. 37. Humana Press, NJ, USA (1995).
  • EndoY, Sawasaki T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics5, 45–57 (2004).
  • Tarui H, Murata M, Tani I et al. Establishment and characterization of cell-free translation/glycosylation in insect cell (Spodoptera frugiperda 21) extract prepared with high pressure treatment. Appl. Microbiol. Biotechnol.55, 446–453 (2001).
  • Jackson AM, Boutell J, Cooley N, He M. Cell-free protein synthesis for proteomics. Brief Funct. Genomic. Proteomic.2, 308–319 (2004).
  • Davis BG. Biochemistry. Mimicking post-translational modifications of proteins. Science303, 480–482 (2004).
  • Katzen F, Chang G, Kudlicki W. The past, present and future of cell-free protein synthesis. Trends Biotechnol.23, 150–156 (2005).
  • Acton TB, Gunsalus KC, Xiao R et al. Robotic cloning and Protein Production Platform of the Northeast Structural Genomics Consortium. Methods Enzymol.394, 210–243 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.