210
Views
15
CrossRef citations to date
0
Altmetric
Review

Proteomics of neural stem cells

, , &
Pages 175-186 | Published online: 09 Jan 2014

References

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol.124(3), 319–335 (1965).
  • Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature207(5000), 953–956 (1965).
  • Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron11(1), 173–189 (1993).
  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci.16(6), 2027–2033 (1996).
  • Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA96(10), 5768–5773 (1999).
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat. Med.4(11), 1313–1317 (1998).
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255(5052), 1707–1710 (1992).
  • Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant.16(2), 133–150 (2007).
  • Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res.69(6), 745–749 (2002).
  • Bouhon IA, Kato H, Chandran S, Allen ND. Neural differentiation of mouse embryonic stem cells in chemically defined medium. Brain Res. Bull.68(1–2), 62–75 (2005).
  • Roy NS, Nakano T, Keyoung HM et al. Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat. Biotechnol.22(3), 297–305 (2004).
  • Donato R, Miljan EA, Hines SJ et al. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci.8, 36 (2007).
  • Hoffrogge R, Mikkat S, Scharf C et al. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics6(6), 1833–1847 (2006).
  • Romero-Ramos M, Vourc’h P, Young HE et al. Neuronal differentiation of stem cells isolated from adult muscle. J. Neurosci. Res.69(6), 894–907 (2002).
  • Sieber-Blum M, Grim M, Hu YF, Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn.231(2), 258–69 (2004).
  • Choi CB, Cho YK, Prakash KV et al. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun.350(1), 138–146 (2006).
  • Park KI, Ourednik J, Ourednik V et al. Global gene and cell replacement strategies via stem cells. Gene Ther.9(10), 613–624 (2002).
  • Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur. J. Neurosci.26(3), 605–614 (2007).
  • Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell110(3), 385–397 (2002).
  • Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells25(2), 263–670 (2007).
  • Lindvall O, Bjorklund A. Cell therapy in Parkinson’s disease. NeuroRx1(4), 382–393 (2004).
  • Patel NK, Gill SS. GDNF delivery for Parkinson’s disease. Acta Neurochir. Suppl.97(Pt 2), 135–154 (2007).
  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci.21(17), 6718–6731 (2001).
  • Dunnett SB, Rosser AE. Stem cell transplantation for Huntington’s disease. Exp. Neurol.203(2), 279–292 (2007).
  • Cepeda C, Ariano MA, Calvert CR et al. NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res.66(4), 525–539 (2001).
  • Fox JH, Kama JA, Lieberman G et al. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS ONE2(3), E334 (207).
  • Nucifora FC Jr, Sasaki M, Peters MF et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science291(5512), 2423–2428 (2001).
  • Martinez-Serrano A, Bjorklund A. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J. Neurosci.16(15), 4604–4616 (1996).
  • Vazey EM, Chen K, Hughes SM, Connor B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp. Neurol.199(2), 384–396 (2006).
  • Bachoud-Levi AC, Remy P, Nguyen JP et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet356(9246), 1975–1979 (2000).
  • Bachoud-Levi AC, Gaura V, Brugieres P et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol.5(4), 303–309 (2006).
  • Baker AH, Sica V, Work LM et al. Brain protection using autologous bone marrow cell, metalloproteinase inhibitors, and metabolic treatment in cerebral ischemia. Proc. Natl Acad. Sci. USA104(9), 3597–3602 (2007).
  • Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J. Neurotrauma23(3–4), 438–452 (2006).
  • Tsai EC, Tator CH. Neuroprotection and regeneration strategies for spinal cord repair. Curr. Pharm. Des.11(10), 1211–1222 (2005).
  • Ma L, Sun B, Hood L, Tian Q. Molecular profiling of stem cells. Clin. Chim. Acta378(1–2), 24–32 (2007).
  • Unwin RD, Whetton AD. Systematic proteome and transcriptome analysis of stem cell populations. Cell Cycle5(15), 1587–1591 (2006).
  • Vodicka P, Skalnikova H, Kovarova H. The characterization of stem cell proteomes. Curr. Opin. Mol. Ther.8(3), 232–239 (2006).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292(5518), 929–934 (2001).
  • Hoffrogge R, Beyer S, Hubner R et al. 2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells. Proteomics7(1), 33–46 (2007).
  • Pahnke J, Mix E, Knoblich R et al. Overexpression of glial cell line-derived neurotrophic factor induces genes regulating migration and differentiation of neuronal progenitor cells. Exp. Cell Res.297(2), 484–494 (2004).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250(10), 4007–4021 (1975).
  • Maurer MH, Feldmann RE Jr, Futterer CD, Kuschinsky W. The proteome of neural stem cells from adult rat hippocampus. Proteome Sci.1(1), 4– (2003).
  • Skalnikova H, Halada P, Vodicka P et al. A proteomic approach to studying the differentiation of neural stem cells. Proteomics7(11), 1825–1838 (2007).
  • Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE. Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics4(12), 3813–3832 (2004).
  • Nagano K, Taoka M, Yamauchi Y et al. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics5(5), 1346–1361 (2005).
  • Tonge R, Shaw J, Middleton B et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics1(3), 377–396 (2001).
  • Maurer MH, Bromme JO, Feldmann RE Jr et al. Glycogen synthase kinase 3β (GSK3β) regulates differentiation and proliferation in neural stem cells from the rat subventricular zone. J. Proteome Res.6(3), 1198–1208 (2007).
  • Chatterjee M, Chatterjee D. Developmental changes in the neuronal protein composition: a study by high resolution 2D-gel electrophoresis. Mol. Cell. Biochem.272(1–2), 201–207 (2005).
  • Pearce A, Svendsen CN. Characterization of stem cell expression using two-dimensional electrophoresis. Electrophoresis20(4–5), 969–970 (1999).
  • Salim K, Guest PC, Skynner HA et al. Identification of proteomic changes during differentiation of adult mouse subventricular zone progenitor cells. Stem Cells Dev.16(1), 143–165 (2007).
  • Battersby A, Jones RD, Lilley KS et al. Comparative proteomic analysis reveals differential expression of Hsp25 following the directed differentiation of mouse embryonic stem cells. Biochim. Biophys. Acta1773(2), 147–156 (2007).
  • Inberg A, Bogoch Y, Bledi Y, Linial M. Cellular processes underlying maturation of P19 neurons: changes in protein folding regimen and cytoskeleton organization. Proteomics7(6), 910–920 (2007).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Salim K, Kehoe L, Minkoff MS et al. Identification of differentiating neural progenitor cell markers using shotgun isobaric tagging mass spectrometry. Stem Cells Dev.15(3), 461–470 (2006).
  • Taupin P, Ray J, Fischer WH et al. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron28(2), 385–397 (2000).
  • Dahl A, Eriksson PS, Persson AI et al. Proteome analysis of conditioned medium from cultured adult hippocampal progenitors. Rapid Commun. Mass Spectrom.17(19), 2195–2202 (2003).
  • Sakaguchi M, Shingo T, Shimazaki T et al. A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc. Natl Acad. Sci. USA103(18), 7112–7117 (2006).
  • Kuwata H, Yip TT, Yip CL, Tomita M, Hutchens TW. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun.245(3), 764–773 (1998).
  • Bravo R, Frank R, Blundell PA, Macdonald-Bravo H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature326(6112), 515–517 (1987).
  • Kato H, Chen S, Kiyama H et al. Identification of a novel WD repeat-containing gene predominantly expressed in developing and regenerating neurons. J. Biochem.128(6), 923–932 (2000).
  • Maurer MH, Feldmann RE Jr, Futterer CD, Butlin J, Kuschinsky W. Comprehensive proteome expression profiling of undifferentiated versus differentiated neural stem cells from adult rat hippocampus. Neurochem. Res.29(6), 1129–1144 (2004).
  • Peng H, Kolb R, Kennedy JE, Zheng J. Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation. J. Neuroimmune Pharmacol.2(3), 251–258 (2007).
  • An J, Yuan Q, Wang C et al. Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics5(6), 1656–1668 (2005).
  • Kim SH, Fountoulakis M, Cairns N, Lubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer’s disease and Down syndrome. J. Neural Transm. Suppl. (61), 223–235 (2001).
  • Wang D, Gao L. Proteomic analysis of neural differentiation of mouse embryonic stem cells. Proteomics5(17), 4414–4426 (2005).
  • Ralat LA, Manevich Y, Fisher AB, Colman RF. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry45(2), 360–372 (2006).
  • Guo X, Ying W, Wan J et al. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro.Electrophoresis22(14), 3067–3075 (2001).
  • Gerke V, Moss SE. Annexins: from structure to function. Physiol. Rev.82(2), 331–371 (2002).
  • Bamburg JR, McGough A, Ono S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol.9(9), 364–370 (1999).
  • Gungabissoon RA, Bamburg JR. Regulation of growth cone actin dynamics by ADF/cofilin. J. Histochem. Cytochem.51(4), 411–420 (2003).
  • Nakamura T, Lipton SA. Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cell. Mol. Life Sci.64(13), 1609–1620 (2007).
  • Nomura Y. Neuronal apoptosis and protection: effects of nitric oxide and endoplasmic reticulum-related proteins. Biol. Pharm. Bull.27(7), 961–963 (2004).
  • Atkin JD, Farg MA, Turner BJ et al. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem.281(40), 30152–30165 (2006).
  • Chen S, Brown IR. Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones12(1), 51–58 (2007).
  • Arrigo AP, Simon S, Gibert B et al. Hsp27 (HspB1) and αβ-crystallin (HspB5) as therapeutic targets. FEBS Lett.581(19), 3665–3674 (2007).
  • Williams KL, Rahimtula M, Mearow KM. Hsp27 and axonal growth in adult sensory neurons in vitro.BMC Neurosci.6(1), 24 (2005).
  • Sheline CT, Choi DW. Neuronal death in cultured murine cortical cells is induced by inhibition of GAPDH and triosephosphate isomerase. Neurobiol. Dis.5(1), 47–54 (1998).
  • Chou MY, Rooke N, Turck CW, Black DL. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol. Cell. Biol.19(1), 69–77 (1999).
  • Grabowski PJ. A molecular code for splicing silencing: configurations of guanosine-rich motifs. Biochem. Soc. Trans.32(Pt 6), 924–927 (2004).
  • Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J. Biol. Chem.280(26), 24931–24940 (2005).
  • George AJ, Holsinger RM, McLean CA et al. Decreased phosphatidylethanolamine binding protein expression correlates with Aβ accumulation in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol. Aging.27(4), 614–623 (2006).
  • Kato T, Heike T, Okawa K et al. A neurosphere-derived factor, cystatin C, supports differentiation of ES cells into neural stem cells. Proc. Natl Acad. Sci. USA103(15), 6019–6024 (2006).
  • Schrattenholz A, Wozny W, Klemm M et al. Differential and quantitative molecular analysis of ischemia complexity reduction by isotopic labeling of proteins using a neural embryonic stem cell model. J. Neurol. Sci.229–230, 261–267 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.