59
Views
12
CrossRef citations to date
0
Altmetric
Review

Expression profiling of the cerebral ischemic and hypoxic response

, &
Pages 263-282 | Published online: 09 Jan 2014

References

  • Michiels C. Physiological and pathological responses to hypoxia. Am. J. Pathol.164(6), 1875–1882 (2004).
  • Acker T, Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J. Exp. Biol.207(Pt 18), 3171–3188 (2004).
  • Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J. Clin. Invest.106(6), 723–731 (2000).
  • Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol.13(2), 167–171 (2001).
  • White BC, Sullivan JM, DeGracia DJ et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci.179(S1–2), 1–33 (2000).
  • Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int.40(6), 511–526 (2002).
  • Li C, Wright MM, Jackson RM. Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp. Lung Res.28(5), 373–389 (2002).
  • Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav.87(1), 179–197 (2007).
  • Prabhakar NR. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp. Physiol.91(1), 17–23 (2006).
  • Lopez-Barneo J, Pardal R, Ortega-Saenz P. Cellular mechanism of oxygen sensing. Annu. Rev. Physiol.63, 259–287 (2001).
  • Bickler PE, Donohoe PH. Adaptive responses of vertebrate neurons to hypoxia. J. Exp. Biol.205(Pt 23), 3579–3586 (2002).
  • Lipton P. Ischemic cell death in brain neurons. Physiol. Rev.79(4), 1431–1568 (1999).
  • Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol.26(7–8), 1057–1083 (2006).
  • Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV. Hypoxia inhibits G1/S transition through regulation of p27 expression. J. Biol. Chem.276(11), 7919–7926 (2001).
  • Denko NC, Fontana LA, Hudson KM et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene22(37), 5907–5914 (2003).
  • Koritzinsky M, Seigneuric R, Magagnin MG, Beucken T, Lambin P, Wouters BG. The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiother. Oncol.76(2), 177–186 (2005).
  • Koritzinsky M, Magagnin MG, van den Beucken T et al. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J.25(5), 1114–1125 (2006).
  • Koumenis C, Naczki C, Koritzinsky M et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol. Cell. Biol.22(21), 7405–7416 (2002).
  • MacManus JP, Graber T, Luebbert C et al. Translation-state analysis of gene expression in mouse brain after focal ischemia. J. Cereb. Blood Flow Metab.24(6), 657–667 (2004).
  • Hochachka PW, Lutz PL. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol.130(4), 435–459 (2001).
  • Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J.16(10), 1151–1162 (2002).
  • Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem. Biophys. Res. Commun.338(1), 617–626 (2005).
  • Michiels C, Minet E, Mottet D, Raes M. Regulation of gene expression by oxygen: NF-κ B and HIF-1, two extremes. Free Radic. Biol. Med.33(9), 1231–1242 (2002).
  • Lukiw WJ, Ottlecz A, Lambrou G et al. Coordinate activation of HIF-1 and NF-κ B DNA binding and COX-2 and VFGF expression in retinal cells by hypoxia. Invest. Ophthalmol. Vis. Sci.44(10), 4163–4170 (2003).
  • Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J.274(13), 3210–3217 (2007).
  • Cid C, Garcia-Bonilla L, Camafeita E, Burda J, Salinas M, Alcazar A. Proteomic characterization of protein phosphatase 1 complexes in ischemia-reperfusion and ischemic tolerance. Proteomics7(17), 3207–3218 (2007).
  • Kumar GK, Klein JB. Analysis of expression and posttranslational modification of proteins during hypoxia. J. Appl. Physiol.96(3), 1178–1186 (2004).
  • Zhang F, Liu CL, Hu BR. Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J. Neurochem.98(1), 102–112 (2006).
  • Lee YJ, Miyake S, Wakita H et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood Flow Metab.27(5), 950–962 (2007).
  • Yang W, Sheng H, Warner DS, Paschen W. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J. Cereb. Blood Flow Metab. (2008) (Epub ahead of print).
  • Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J. Cereb. Blood Flow Metab.26(12), 1465–1478 (2006).
  • Hoyte L, Kaur J, Buchan AM. Lost in translation: taking neuroprotection from animal models to clinical trials. Exp. Neurol.188(2), 200–204 (2004).
  • Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann. Emerg. Med.36(5), 483–506 (2000).
  • Oechmichen M, Meissner C. Cerebral hypoxia and ischemia: the forensic point of view: a review. J. Forensic Sci.51(4), 880–887 (2006).
  • Yang G, Kitagawa K, Ohtsuki T et al. Regional difference of neuronal vulnerability in the murine hippocampus after transient forebrain ischemia. Brain Res.870(1–2), 195–198 (2000).
  • Gozal E, Row BW, Schurr A, Gozal D. Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci. Lett.305(3), 197–201 (2001).
  • Gozal E, Gozal D, Pierce WM et al. Proteomic analysis of CA1 and CA3 regions of rat hippocampus and differential susceptibility to intermittent hypoxia. J. Neurochem.83(2), 331–345 (2002).
  • Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev. Neurosci.27(2–4), 81–86 (2005).
  • Jin K, Mao XO, Eshoo MW et al. cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem. Res.27(10), 1105–1112 (2002).
  • Jin K, Mao XO, Greenberg DA. Proteomic analysis of neuronal hypoxia in vitro. Neurochem. Res.29(6), 1123–1128 (2004).
  • Mense SM, Sengupta A, Zhou M et al. Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in primary human astrocytes. Physiol. Genomics25(3), 435–449 (2006).
  • Hasselblatt M, Paulus W. Astrocytic gene expression profiling upon hypoxia. Neuroreport17(1), 51–54 (2006).
  • Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J, Stanimirovic D. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J.19(13), 1809–1821 (2005).
  • Haseloff RF, Krause E, Bigl M, Mikoteit K, Stanimirovic D, Blasig IE. Differential protein expression in brain capillary endothelial cells induced by hypoxia and posthypoxic reoxygenation. Proteomics6(6), 1803–1809 (2006).
  • Jogi A, Vallon-Christersson J, Holmquist L, Axelson H, Borg A, Pahlman S. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp. Cell Res.295(2), 469–487 (2004).
  • Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene398(1–2), 114–122 (2007).
  • Miglio G, Varsaldi F, Francioli E, Battaglia A, Canonico PL, Lombardi G. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur. J. Pharmacol.489(3), 157–165 (2004).
  • Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci.26(5), 248–254 (2003).
  • Kirino T. Ischemic tolerance. J. Cereb. Blood Flow Metab.22(11), 1283–1296 (2002).
  • Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, Van Melle G. Do transient ischemic attacks have a neuroprotective effect? Neurology54(11), 2089–2094 (2000).
  • Wegener S, Gottschalk B, Jovanovic V et al. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke35(3), 616–621 (2004).
  • Fordel E, Geuens E, Dewilde S et al. Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem. Biophys. Res. Commun.319(2), 342–348 (2004).
  • Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA. Neuroglobin protects the brain from experimental stroke in vivo. Proc. Natl Acad. Sci. USA100(6), 3497–3500 (2003).
  • Hickey RW, Zhu RL, Alexander HL et al. 10 kD mitochondrial matrix heat shock protein mRNA is induced following global brain ischemia in the rat. Brain Res. Mol. Brain Res.79(1–2), 169–173 (2000).
  • Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1α by global ischemia in rat brain. Neuroscience99(3), 577–585 (2000).
  • Stolze I, Berchner-Pfannschmidt U, Freitag P et al. Hypoxia-inducible erythropoietin gene expression in human neuroblastoma cells. Blood100(7), 2623–2628 (2002).
  • Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J. Biol. Chem.277(42), 39728–39738 (2002).
  • Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J. Neurochem.89(1), 73–89 (2004).
  • Gilbert RW, Costain WJ, Blanchard ME, Mullen KL, Currie RW, Robertson HA. DNA microarray analysis of hippocampal gene expression measured twelve hours after hypoxia–ischemia in the mouse. J. Cereb. Blood Flow Metab.23(10), 1195–1211 (2003).
  • Hedtjarn M, Mallard C, Hagberg H. Inflammatory gene profiling in the developing mouse brain after hypoxia–ischemia. J. Cereb. Blood Flow Metab.24(12), 1333–1351 (2004).
  • Jin K, Mao XO, Eshoo MW et al. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol.50(1), 93–103 (2001).
  • Jogi A, Ora I, Nilsson H et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc. Natl Acad. Sci. USA99(10), 7021–7026 (2002).
  • Kawahara N, Wang Y, Mukasa A et al. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. J. Cereb. Blood Flow Metab.24(2), 212–223 (2004).
  • Kim JB, Piao CS, Lee KW et al. Delayed genomic responses to transient middle cerebral artery occlusion in the rat. J. Neurochem.89(5), 1271–1282 (2004).
  • Kim YD, Sohn NW, Kang C, Soh Y. DNA array reveals altered gene expression in response to focal cerebral ischemia. Brain Res. Bull.58(5), 491–498 (2002).
  • Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR. Genomics of the periinfarction cortex after focal cerebral ischemia. J. Cereb. Blood Flow Metab.23(7), 786–810 (2003).
  • Lu XC, Williams AJ, Yao C et al. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J. Neurosci. Res.77(6), 843–857 (2004).
  • Nagata T, Takahashi Y, Sugahara M et al. Profiling of genes associated with transcriptional responses in mouse hippocampus after transient forebrain ischemia using high-density oligonucleotide DNA array. Brain Res. Mol. Brain Res.121(1–2), 1–11 (2004).
  • Raghavendra RVL, Bowen KK, Dhodda VK et al. Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J. Neurochem.83(5), 1072–1086 (2002).
  • Rickhag M, Wieloch T, Gido G et al. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue. J. Neurochem.96(1), 14–29 (2006).
  • Ronnback A, Dahlqvist P, Svensson PA et al. Gene expression profiling of the rat hippocampus one month after focal cerebral ischemia followed by enriched environment. Neurosci. Lett.385(2), 173–178 (2005).
  • Schmidt-Kastner R, Zhang B, Belayev L et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res. Mol. Brain Res.108(1–2), 81–93 (2002).
  • Soriano MA, Tessier M, Certa U, Gill R. Parallel gene expression monitoring using oligonucleotide probe arrays of multiple transcripts with an animal model of focal ischemia. J. Cereb. Blood Flow Metab.20(7), 1045–1055 (2000).
  • Stenzel-Poore MP, Stevens SL, Xiong Z et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet362(9389), 1028–1037 (2003).
  • Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR. Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur. J. Neurosci.15(12), 1937–1952 (2002).
  • Tang Y, Pacary E, Freret T et al. Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol. Dis.21(1), 18–28 (2006).
  • Vikman P, Edvinsson L. Gene expression profiling in the human middle cerebral artery after cerebral ischemia. Eur. J. Neurol.13(12), 1324–1332 (2006).
  • Yakubov E, Gottlieb M, Gil S, Dinerman P, Fuchs P, Yavin E. Overexpression of genes in the CA1 hippocampus region of adult rat following episodes of global ischemia. Brain Res. Mol. Brain Res.127(1–2), 10–26 (2004).
  • Feng Z, Davis DP, Sasik R, Patel HH, Drummond JC, Patel PM. Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res.1177, 103–123 (2007).
  • Ralph GS, Parham S, Lee SR et al. Identification of potential stroke targets by lentiviral vector mediated overexpression of HIF-1 α and HIF-2 α in a primary neuronal model of hypoxia. J. Cereb. Blood Flow Metab.24(2), 245–258 (2004).
  • Mitsios N, Saka M, Krupinski J et al. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion. BMC Neurosci.8, 93 (2007).
  • Serafini T. Of neurons and gene chips. Curr. Opin. Neurobiol.9(5), 641–644 (1999).
  • Yokota N, Uchijima M, Nishizawa S, Namba H, Koide Y. Identification of differentially expressed genes in rat hippocampus after transient global cerebral ischemia using subtractive cDNA cloning based on polymerase chain reaction. Stroke32(1), 168–174 (2001).
  • Majda BT, Meloni BP, Rixon N, Knuckey NW. Suppression subtraction hybridization and northern analysis reveal upregulation of heat shock, trkB, and sodium calcium exchanger genes following global cerebral ischemia in the rat. Brain Res. Mol. Brain Res.93(2), 173–179 (2001).
  • Bates S, Read SJ, Harrison DC et al. Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation. Brain Res. Mol. Brain Res.93(1), 70–80 (2001).
  • Kruger C, Cira D, Sommer C, Fischer A, Schabitz WR, Schneider A. Long-term gene expression changes in the cortex following cortical ischemia revealed by transcriptional profiling. Exp. Neurol.200(1), 135–152 (2006).
  • Schneider A, Fischer A, Kruger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). Brain Res. Mol. Brain Res.124(1), 20–28 (2004).
  • Trendelenburg G, Prass K, Priller J et al. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci.22(14), 5879–5888 (2002).
  • Focking M, Besselmann M, Trapp T. Proteomics of experimental stroke in mice. Acta Neurobiol. Exp. (Wars)66(4), 273–278 (2006).
  • Hu X, Rea HC, Wiktorowicz JE, Perez-Polo JR. Proteomic analysis of hypoxia/ischemia-induced alteration of cortical development and dopamine neurotransmission in neonatal rat. J. Proteome. Res.5(9), 2396–2404 (2006).
  • Washburn MP, Wolters D, Yates JR, III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA97(17), 9390–9395 (2000).
  • Thomas PD, Campbell MJ, Kejariwal A et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res.13(9), 2129–2141 (2003).
  • Thomas PD, Kejariwal A, Guo N et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res.34(Web Server issue), W645–W650 (2006).
  • Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev.54(1), 34–66 (2007).
  • Jones NM, Bergeron M. Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J. Neurochem.89(1), 157–167 (2004).
  • Choi JS, Kim HY, Cha JH, Lee MY. Ischemic preconditioning-induced activation of ERK1/2 in the rat hippocampus. Neurosci. Lett.409(3), 187–191 (2006).
  • Barone FC, Irving EA, Ray AM et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med. Res. Rev.21(2), 129–145 (2001).
  • Kuan CY, Whitmarsh AJ, Yang DD et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc. Natl Acad. Sci. USA100(25), 15184–15189 (2003).
  • Borsello T, Clarke PG, Hirt L et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med.9(9), 1180–1186 (2003).
  • Nurmi A, Lindsberg PJ, Koistinaho M et al. Nuclear factor-κB contributes to infarction after permanent focal ischemia. Stroke35(4), 987–991 (2004).
  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-κB is activated and promotes cell death in focal cerebral ischemia. Nat. Med.5(5), 554–559 (1999).
  • Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab.24(4), 351–371 (2004).
  • Dudley AC, Thomas D, Best J, Jenkins A. The STATs in cell stress-type responses. Cell Commun. Signal.2(1), 8 (2004).
  • Takagi Y, Harada J, Chiarugi A, Moskowitz MA. STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury. J. Cereb. Blood Flow Metab.22(11), 1311–1318 (2002).
  • Sun SL, Li TJ, Yang PY, Qiu Y, Rui YC. Modulation of signal transducers and activators of transcription (STAT) factor pathways during focal cerebral ischaemia: a gene expression array study in rat hippocampus after middle cerebral artery occlusion. Clin. Exp. Pharmacol. Physiol.34(11), 1097–1101 (2007).
  • Joung YH, Park JH, Park T et al. Hypoxia activates signal transducers and activators of transcription 5 (STAT5) and increases its binding activity to the GAS element in mammary epithelial cells. Exp. Mol. Med.35(5), 350–357 (2003).
  • Stenzel-Poore MP, Stevens SL, Simon RP. Genomics of preconditioning. Stroke35(11 Suppl 1), 2683–2686 (2004).
  • Wen YD, Zhang HL, Qin ZH. Inflammatory mechanism in ischemic neuronal injury. Neurosci. Bull.22(3), 171–182 (2006).
  • Chen Y, Swanson RA. Astrocytes and brain injury. J. Cereb. Blood Flow Metab.23(2), 137–149 (2003).
  • Dienel GA, Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia50(4), 362–388 (2005).
  • Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci.10(11), 1377–1386 (2007).
  • Buisson A, Lesne S, Docagne F et al. Transforming growth factor-β and ischemic brain injury. Cell. Mol. Neurobiol.23(4–5), 539–550 (2003).
  • Kim Y , Lee C. The gene encoding transforming growth factor β 1 confers risk of ischemic stroke and vascular dementia. Stroke37(11), 2843–2845 (2006).
  • Kelly S, Bieneman A, Horsburgh K et al. Targeting expression of Hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of Hsp70i in vivo and in vitro. J. Cereb. Blood Flow Metab.21(8), 972–981 (2001).
  • Kelly S, McCulloch J, Horsburgh K. Minimal ischaemic neuronal damage and Hsp70 expression in MF1 strain mice following bilateral common carotid artery occlusion. Brain Res.914(1–2), 185–195 (2001).
  • Rajdev S, Sharp FR. Stress proteins as molecular markers of neurotoxicity. Toxicol. Pathol.28(1), 105–112 (2000).
  • Rajdev S, Hara K, Kokubo Y et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol.47(6), 782–791 (2000).
  • Tsuchiya D, Hong S, Matsumori Y et al. Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery53(5), 1179–1187 (2003).
  • Lee JE, Yenari MA, Sun GH et al. Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp. Neurol.170(1), 129–139 (2001).
  • Giffard RG, Xu L, Zhao H et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J. Exp. Biol.207(Pt 18), 3213–3220 (2004).
  • Matsumori Y, Hong SM, Aoyama K et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J. Cereb. Blood Flow Metab.25(7), 899–910 (2005).
  • Tsuchiya D, Hong S, Matsumori Y et al. Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J. Cereb. Blood Flow Metab.23(6), 718–727 (2003).
  • Kwon JH, Kim JB, Lee KH et al. Protective effect of heat shock protein 27 using protein transduction domain-mediated delivery on ischemia/reperfusion heart injury. Biochem. Biophys. Res. Commun.363(2), 399–404 (2007).
  • Kim SW, Lee JK. NO-induced downregulation of Hsp10 and Hsp60 expression in the postischemic brain. J. Neurosci. Res.85(6), 1252–1259 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.