141
Views
13
CrossRef citations to date
0
Altmetric
Review

Campylobacter proteomics: guidelines, challenges and future perspectives

&
Pages 61-74 | Published online: 09 Jan 2014

References

  • Butzler JP. Campylobacter, from obscurity to celebrity. Clin. Microbiol. Infect.10(10), 868–876 (2004).
  • Crushell E, Harty S, Sharif F, Bourke B. Enteric Campylobacter: purging its secrets? Pediatr. Res.55(1), 3–12 (2004).
  • Dorrell N, Wren BW. The second century of Campylobacter research: recent advances, new opportunities and old problems. Curr. Opin. Infect. Dis.20(5), 514–518 (2007).
  • Ketley JM. Pathogenesis of enteric infection by Campylobacter. Microbiology143(1), 5–21 (1997).
  • Snelling WJ, Matsuda M, Moore JE, Dooley JS. Campylobacter jejuni. Lett. Appl. Microbiol.41(4), 297–302 (2005).
  • Young KT, Davis LM, Dirita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol.5(9), 665–679 (2007).
  • McFadyean J, Stockman S. Report of the Departmental Committee appointed by the Board of Agriculture and Fisheries to inquire into Epizootic Abortion. His Majesty’s Stationery Office, London, UK (1913).
  • Skirrow MB. John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis.43(9), 1213–1217 (2006).
  • Butzler JP, Dekeyser P, Detrain M, Dehaen F. Related vibrio in stools. J. Pediatr.82(3), 493–495 (1973).
  • Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J. Acute enteritis due to related vibrio: first positive stool cultures. J. Infect. Dis.125(4), 390–392 (1972).
  • Skirrow MB. Campylobacter enteritis: a “new” disease. Br. Med. J.2(6078), 9–11 (1977).
  • Little CL, Richardson JF, Owen RJ, de Pinna E, Threlfall EJ. Campylobacter and Salmonella in raw red meats in the United Kingdom: prevalence, characterization and antimicrobial resistance pattern, 2003–2005. Food Microbiol.25(3), 538–543 (2008).
  • Pope C, Wilson J, Taboada EN et al. Epidemiology, relative invasive ability, molecular characterization, and competitive performance in the chicken gut of Campylobacter jejuni strains. Appl. Environ. Microbiol.73(24), 7959–7966 (2007).
  • Burnett TA, A Hornitzky M, Kuhnert P, Djordjevic SP. Speciating Campylobacter jejuni and Campylobacter coli isolates from poultry and humans using six PCR-based assays. FEMS Microbiol. Lett.216(2), 201–209 (2002).
  • Djordjevic SP, Unicomb LE, Adamson PJ, Mickan L, Rios R. Clonal complexes of Campylobacter jejuni identified by multilocus sequence typing are reliably predicted by restriction fragment length polymorphism analyses of the flaA gene. J. Clin. Microbiol.45(1), 102–108 (2007).
  • Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis.157(3), 472–479 (1988).
  • Byrne CM, Clyne M, Bourke B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology153(2), 561–569 (2007).
  • Lecuit M, Abachin E, Martin A et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N. Eng. J. Med.350(3), 239–248 (2004).
  • Patton CM, Shaffer N, Edmonds P et al. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positive Campylobacter species) in the United States. J. Clin. Microbiol.27(1), 66–73 (1989).
  • Broczyk A, Thompson S, Smith D, Lior H. Water-borne outbreak of Campylobacter laridis-associated gastroenteritis. Lancet1(8525), 164–165 (1987).
  • Gurtler M, Alter T, Kasimir S, Fehlhaber K. The importance of Campylobacter coli in human campylobacteriosis: prevalence and genetic characterization. Epidemiol. Infect.133(6), 1081–1087 (2005).
  • Edmonds P, Patton CM, Griffin PM et al.Campylobacter hyointestinalis associated with human gastrointestinal disease in the United States. J. Clin. Microbiol.25(4), 685–691 (1987).
  • Gribble MJ, Salit IE, Isaac-Renton J, Chow AW. Campylobacter infections in pregnancy. Case report and literature review. Am. J. Obstet. Gynecol.140(4), 423–426 (1981).
  • Sauerwein RW, Bisseling J, Horrevorts AM. Septic abortion associated with Campylobacter fetus subspecies fetus infection: case report and review of the literature. Infection21(5), 331–333 (1993).
  • Nouwens AS, Cordwell SJ, Larsen MR et al. Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis21(17), 3797–3809 (2000).
  • Lock RA, Cordwell SJ, Coombs GW, Walsh BJ, Forbes GM. Proteome analysis of Helicobacter pylori: major proteins of type strain NCTC 11637. Pathology33(3), 365–374 (2001).
  • Bae SH, Harris AG, Hains PG et al. Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics3(5), 569–579 (2003).
  • Cordwell SJ, Len AC, Touma RG et al. Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics8(1), 122–139 (2008).
  • Fox EM, Raftery M, Goodchild A, Mendz GL. Campylobacter jejuni response to ox-bile stress. FEMS Immunol. Med. Microbiol.49(1), 165–172 (2007).
  • Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol.186(2), 503–517 (2004).
  • Sampathkumar B, Napper S, Carrillo CD et al. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology152(2), 567–577 (2006).
  • Seal BS, Hiett KL, Kuntz RL et al. Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J. Proteome Res.6(12) 4582–4591 (2007).
  • Young NM, Brisson JR, Kelly J et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem.277(45), 42530–42539 (2002).
  • Kalmokoff M, Lanthier P, Tremblay TL et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol.188(12), 4312–4320 (2006).
  • Holmes K, Mulholland F, Pearson BM et al.Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology151(1), 243–257 (2005).
  • Voisin S, Watson DC, Tessier L et al. The cytoplasmic phosphoproteome of the Gram-negative bacterium Campylobacter jejuni: evidence for modification by unidentified protein kinases. Proteomics7(23), 4338–4348 (2007).
  • Prokhorova TA, Nielsen PN, Petersen J et al. Novel surface polypeptides of Campylobacter jejuni as traveller’s diarrhoea vaccine candidates discovered by proteomics. Vaccine24(40–41), 6446–6455 (2006).
  • Pajaniappan M, Hall JE, Cawthraw SA et al. A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol. Microbiol.68(2), 474–491 (2008).
  • Malik-Kale P, Parker CT, Konkel ME. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J. Bacteriol.190(7), 2286–2297 (2008).
  • Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev.15(2), 155–166 (2002).
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu. Rev. Microbiol.49, 711–745 (1995).
  • Ehrlich GD, Hu FZ, Shen K, Stoodley P, Post JC. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin. Orthop. Relat. Res. (437), 20–24 (2005).
  • Wassenaar TM, Bleumink-Pluym NM, van der Zeijst BA. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J.10(8), 2055–2061 (1991).
  • Stintzi A, Marlow D, Palyada K et al. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun.73(3), 1797–1810 (2005).
  • Rivera-Amill V, Kim BJ, Seshu J, Konkel ME. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis.183(11), 1607–1616 (2001).
  • Konkel ME, Cieplak W Jr. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization. Infect. Immun.60(11), 4945–4949 (1992).
  • Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ, van Vliet AH. The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol, 189(22), 8402–8403 (2007).
  • Parkhill J, Wren BW, Mungall K et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403(6770), 665–668 (2000).
  • Poly F, Read T, Tribble DR, Baqar S, Lorenzo M, Guerry P. Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect. Immun.75(7), 3425–3433 (2007).
  • Fouts DE, Mongodin EF, Mandrell RE et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS biology3(1), e15 (2005).
  • Hofreuter D, Tsai J, Watson RO et al. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun.74(8), 4694–4707 (2006).
  • Dorrell N, Mangan JA, Laing KG et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res.11(10), 1706–1715 (2001).
  • Ahmed IH, Manning G, Wassenaar TM, Cawthraw S, Newell DG. Identification of genetic differences between two Campylobacter jejunistrains with different colonization potentials. Microbiology148(4), 1203–1212 (2002).
  • Garenaux A, Jugiau F, Rama F et al. Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: effect of temperature. Curr. Microbiol.56(4), 293–297 (2008).
  • de Boer P, Wagenaar JA, Achterberg RP, van Putten JP, Schouls LM, Duim B. Generation of Campylobacter jejuni genetic diversity in vivo. Mol. Microbiol.44(2), 351–359 (2002).
  • Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, Connerton IF. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathogens3(8), e119 (2007).
  • Ridley AM, Toszeghy MJ, Cawthraw SA, Wassenaar TM, Newell DG. Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine. J. Appl. Microbiol.105(1), 95–104 (2008).
  • Robinson DA. Infective dose of Campylobacter jejuni in milk. Br. Med. J. (Clin. Res. Ed.)282(6276), 1584 (1981).
  • Coward C, van Diemen PM, Conlan AJ et al. Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl. Environ. Microbiol.74(12), 3857–3867 (2008).
  • Jones MA, Marston KL, Woodall CA et al. Adaptation of Campylobacter jejuniNCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun.72(7), 3769–3776 (2004).
  • Fernandez H, Vivanco T, Eller G. Expression of invasiveness of Campylobacter jejuni ssp. jejuni after serial intraperitoneal passages in mice. J. Vet. Med. B. Infect. Dis. Vet. Public Health47(8), 635–639 (2000).
  • Carrillo CD, Taboada E, Nash JH et al. Genome-wide expression analyses of Campylobacter jejuniNCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem.279(19), 20327–20338 (2004).
  • Nachamkin I, Liu J, Li M et al.Campylobacter jejuni from patients with Guillain–Barre syndrome preferentially expresses a GD(1a)-like epitope. Infect. Immun.70(9), 5299–5303 (2002).
  • Sheikh KA, Nachamkin I, Ho TW et al.Campylobacter jejuni lipopolysaccharides in Guillain-Barre syndrome: molecular mimicry and host susceptibility. Neurology51(2), 371–378 (1998).
  • Perera VN, Nachamkin I, Ung H et al. Molecular mimicry in Campylobacter jejuni: role of the lipo-oligosaccharide core oligosaccharide in inducing anti-ganglioside antibodies. FEMS Immun. Med. Microbiol.50(1), 27–36 (2007).
  • Palmer SR, Gully PR, White JM et al. Water-borne outbreak of Campylobacter gastroenteritis. Lancet1(8319), 287–290 (1983).
  • Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J. Infect. Dis.152(3), 592–596 (1985).
  • Stasyk T, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics4(12), 3704–3716 (2004).
  • Lescuyer P, Hochstrasser DF, Sanchez JC. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis25(7–8), 1125–1135 (2004).
  • Cordwell SJ. Sequential extraction of proteins by chemical reagents. Methods Mol. Biol.424, 139–146 (2008).
  • Ahram M, Springer DL. Large-scale proteomic analysis of membrane proteins. Expert Rev. Proteomics1(3), 293–302 (2004).
  • Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics6(20), 5409–5417 (2006).
  • Macher BA, Yen TY. Proteins at membrane surfaces-a review of approaches. Mol. Biosyst.3(10), 705–713 (2007).
  • Chen EI, Cociorva D, Norris JL, Yates JR 3rd. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res.6(7), 2529–2538 (2007).
  • Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics4(12), 3665–3685 (2004).
  • Konkel ME, Klena JD, Rivera-Amill V et al. Secretion of virulence proteins from Campylobacter jejuniis dependent on a functional flagellar export apparatus. J. Bacteriol.186(11), 3296–3303 (2004).
  • Biswas D, Fernando UM, Reiman CD et al. Correlation between in vitro secretion of virulence-associated proteins of Campylobacter jejuni and colonization of chickens. Curr. Microbiol.3(54), 207–212 (2007).
  • Poly F, Ewing C, Goon S et al. Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect. Immun.75(8), 3859–3867 (2007).
  • Song YC, Jin S, Louie H et al. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol.53(2), 541–553 (2004).
  • Wassenaar TM. Toxin production by Campylobacter spp. Clin. Microbiol. Rev.10(3), 466–476 (1997).
  • Filip C, Fletcher G, Wulff JL, Earhart CF. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J. Bacteriol.115(3), 717–722 (1973).
  • Schnaitman CA. Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J. Bacteriol.108(1), 545–552 (1971).
  • Sekizawa J, Fukui S. Isolation, solubilization and reaggregation of outer membrane of Escherichia coli. Biochim. Biophys. Acta.307(1), 104–117 (1973).
  • Molloy MP, Herbert BR, Slade MB et al. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem.267(10), 2871–2881 (2000).
  • de Melo MA, Pechere JC. Identification of Campylobacter jejuni surface proteins that bind to Eucaryotic cells in vitro. Infect. Immun.58(6), 1749–1756 (1990).
  • Page WJ, Taylor DE. Comparison of methods used to separate the inner and outer membranes of cell envelopes of Campylobacter spp. J. Gen. Microbiol.134(11), 2925–2932 (1988).
  • Wyszynska A, Zycka J, Godlewska R, Jagusztyn-Krynicka EK. The Campylobacter jejuni/coli cjaA (cj0982c) gene encodes an N-glycosylated lipoprotein localized in the inner membrane. Curr. Microbiol.57(3), 181–188 (2008).
  • Twine SM, Mykytczuk NC, Petit M et al.Francisella tularensis proteome: low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. J. Proteome Res.4(5), 1848–1854 (2005).
  • Cordwell SJ. Technologies for bacterial surface proteomics. Curr. Opin. Microbiol.9(3), 320–329 (2006).
  • Logan SM, Trust TJ. Molecular identification of surface protein antigens of Campylobacter jejuni. Infect. Immun.42(2), 675–682 (1983).
  • McCoy EC, Doyle D, Burda K, Corbeil LB, Winter AJ. Superficial antigens of Campylobacter (Vibrio) fetus: characterization of antiphagocytic component. Infect. Immun.11(3), 517–525 (1975).
  • Pei ZH, Ellison RT 3rd, Blaser MJ. Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J. Biol. Chem.266(25), 16363–16369 (1991).
  • Linton D, Allan E, Karlyshev AV, Cronshaw AD, Wren BW. Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol.43(2), 497–508 (2002).
  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol, 39(5), 1225–1236 (2001).
  • Rodriguez-Ortega MJ, Norais N, Bensi G et al. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat. Biotechnol.24(2), 191–197 (2006).
  • Hansmeier N, Chao TC, Kalinowski J, Puhler A, Tauch A. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics6(8), 2465–2476 (2006).
  • Cullen PA, Xu X, Matsunaga J et al. Surfaceome of Leptospira spp. Infect. Immun.73(8), 4853–4863 (2005).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Ahmad QR, Nguyen DH, Wingerd MA, Church GM, Steffen MA. Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS. Proteome Sci.3(1), 6 (2005).
  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A. Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng.10(6), 673–676 (1997).
  • Sarioglu H, Lottspeich F, Walk T, Jung G, Eckerskorn C. Deamidation as a widespread phenomenon in two-dimensional polyacrylamide gel electrophoresis of human blood plasma proteins. Electrophoresis21(11), 2209–2218 (2000).
  • Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol.21(5), 532–538 (2003).
  • Cargile BJ, Bundy JL, Stephenson JL Jr. Potential for false positive identifications from large databases through tandem mass spectrometry. J. Proteome Res.3(5), 1082–1085 (2004).
  • Boutilier K, Ross M, Podtelejnikov AV et al. Comparison of different search engines using validated MS/MS test datasets. Anal. Chim. Acta.534(1), 11–20 (2005).
  • Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. Identification of Campylobacter jejuni proteins recognized by chicken maternal antibodies. Appl. Environ. Microbiol.74(22), 6867–6875 (2008).
  • Thiede B, Hohenwarter W, Krah A et al. Peptide mass fingerprinting. Methods35(3), 237–247 (2005).
  • Cordwell SJ. Acquisition and archiving of information for bacterial proteomics: from sample preparation to database. Methods Enzymol.358, 207–227 (2002).
  • Kislinger T, Emili A. Multidimensional protein identification technology: current status and future prospects. Expert Rev. Proteomics2(1), 27–39 (2005).
  • Fagerquist CK, Yee E, Miller WG. Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification. Analyst132(10), 1010–1023 (2007).
  • Fagerquist CK. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensisand C. helveticus by “composite” sequence proteomic analysis. J. Proteome Res.6(7), 2539–2549 (2007).
  • Lester PJ, Hubbard SJ. Comparative bioinformatic analysis of complete proteomes and protein parameters for cross-species identification in proteomics. Proteomics2(10), 1392–1405 (2002).
  • Pawelec DP, Korsak D, Wyszynska AK, Rozynek E, Popowski J, Jagusztyn-Krynicka EK. Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS Microbiol. Lett.185(1), 43–49 (2000).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20(18), 3551–3567 (1999).
  • Eng JK, Mccormack AL, Yates JR. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spec.5(11), 976–989 (1994).
  • Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed S, Heck AJ. Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications. Mol. Cell. Proteomics8(1), 190–200 (2009).
  • Crossett B, Edwards AV, White MY, Cordwell SJ. Statistical analysis of image data provided by two-dimensional gel electrophoresis for discovery proteomics. Methods Mol. Med.141, 271–285 (2008).
  • Ong SE, Mann M. Stable isotope labelling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol.359, 37–52 (2007).
  • Heck AJ, Krijgsveld J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics1(3), 317–326 (2004).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem.382(3), 669–678 (2005).
  • Tafelmeyer P, Laurent C, Lenormand P et al. Comprehensive proteome analysis of Mycobacterium ulcerans and quantitative comparison of mycolactone biosynthesis. Proteomics8(15), 3124–3138 (2008).
  • Schmidt F, Donahoe S, Hagens K et al. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell. Proteomics3(1), 24–42 (2004).
  • Guina T, Wu M, Miller SI et al. Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J. Am. Soc. Mass. Spectrom.14(7), 742–751 (2003).
  • Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rap. Commun. Mass Spec.15(24), 2456–2465 (2001).
  • Szymanski CM, Burr DH, Guerry P. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun.70(4), 2242–2244 (2002).
  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology150(6), 1957–1964 (2004).
  • Szymanski CM, Logan SM, Linton D, Wren BW. CampylobacterCampylobacter– a tale of two protein glycosylation systems. Trends Microbiol.11(5), 233–238 (2003).
  • Karlyshev AV, Ketley JM, Wren BW. The Campylobacter jejuniglycome. FEMS Microbiol. Rev.29(2), 377–390 (2005).
  • Szymanski CM, Michael FS, Jarrell HC et al. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem.278(27), 24509–24520 (2003).
  • McNally DJ, Aubrey AJ, Hui JP et al. Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J Biol Chem,282(19), 14463–14475 (2007).
  • Doig P, Kinsella N, Guerry P, Trust TJ. Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol. Microbiol.19(2), 379–387 (1996).
  • Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson JR, Li J. Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. Anal. Chem.78(17), 6081–6087 (2006).
  • Kowarik M, Young NM, Numao S et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J.25(9), 1957–1966 (2006).
  • Thibault P, Logan SM, Kelly JF et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem.276(37), 34862–34870 (2001).
  • Wacker M, Linton D, Hitchen PG et al.N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science298(5599), 1790–1793 (2002).
  • Larsen MR, Hojrup P, Roepstorff P. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteomics4(2), 107–119 (2005).
  • Sun B, Ranish JA, Utleg AG et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell. Proteomics6(1), 141–149 (2007).
  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.3(3), 556–566 (2004).
  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol. Cell. Proteomics6(10), 1778–1787 (2007).
  • Soufi B, Gnad F, Jensen PR et al. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactisIL1403 reveals multiply phosphorylated proteins. Proteomics8(17), 3486–3493 (2008).
  • Macek B, Gnad F, Soufi B et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics7(2), 299–307 (2008).
  • Macek B, Mijakovic I, Olsen JV et al. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics6(4), 697–707 (2007).
  • Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M. Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics7(19), 3509–3526 (2007).
  • Cozzone AJ. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J. Mol. Microbiol. Biotechnol.9(3–4), 198–213 (2005).
  • Thingholm TE, Larsen MR, Ingrell CR, Kassem M, Jensen ON. TiO(2)-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J. Proteome Res.7(8), 3304–3313 (2008).
  • Djordjevic SP, Cordwell SJ, Djordjevic MA, Wilton J, Minion FC. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin. Infect. Immun.72(5), 2791–2802 (2004).
  • Burnett TA, Dinkla K, Rohde M et al. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol. Microbiol.60(3), 669–686 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.