195
Views
159
CrossRef citations to date
0
Altmetric
Review

Nanoparticles of biodegradable polymers for new-concept chemotherapy

Pages 115-125 | Published online: 09 Jan 2014

References

  • Grillo-Lopez AJ. Cancer therapies crisis in the USA. Expert Rev Anticancer Ther. 3(5), 579–582 (2003).
  • Georgoulias V, Georgoulias V. Docetaxel (taxotere) in the treatment of nonsmall cell lung cancer, CUIT: Med. Chem. 9(8), 869–877 (2002).
  • Gelderblom H, Verweij J, Nooter K et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J Cancer 37(13), 1590–1598 (2001).
  • Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc. Chem. Res. 33,94–101 (2000).
  • Kumar MNVR. Nano- and microparticles as controlled drug delivery devices. Pharm. ScL 3 (2), 234–258 (2000).
  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deily. Rev 45(1), 89–121 (2000).
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. Pharm. Biopharm. 50(1), 161–177 (2000).
  • Lambert G, Fattal E, Couvreur E Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv. Drug Deily. Rev 47(1), 99-112(2001).
  • Soppimatha KS, Aminabhavi TM, Kulkarnia AR, Rudzinskib WE. Biodegradable polymeric nanoparticles as drug delivery devices. I ControL Release 70(1–2), 1–20 (2001).
  • Kumar MNVR, Kumar N, Domb AJ et al. Pharmaceutical polymeric controlled drug delivery systems. Adv Polym. Sci. 160, 45–117 (2002).
  • Brigger I, Dubernet C, Couvreur E Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deily. Rev 54(5), 631–651 (2002).
  • Gaur U, Sahoo SK, De TK et al Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. I Pharm. 202(1–2), 1–10 (2000).
  • Dellacherie E, Gref R, Quellec E Nanospheres as new injectable drug carriers: a promising way? MS-Med. ScL 17(5), 619–626 (2001).
  • Evora C, Soriano I, Rogers RA etal. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 12-dipalmitoylphosphatidylcholine. I ControL Release 51,143–152 (1998).
  • Miglietta A, Cavalli R, Bocca C et al Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. I Pharm. 210(1–2), 61–67 (2000).
  • Feng SS, Huang GE Effects of phospholipids as emulsifiers on controlled release of paclitaxel from nanospheres of biodegradable polymers. I ControL Release 71,53–69 (2001).
  • Feng SS, Mu L, Win KY, Huang GE Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. CUIT: Med. Chem. 11,413–424 (2004).
  • Feng SS, Ruan G, Li QT. Liposome encapsulated microspheres of biodegradable polymers: a novel drug delivery device conceived from a combination of polymer-based and lipid-based controlled delivery systems. Biomaterials25,5181-5189 (2004).
  • Ruan G, Feng SS. Preparation and characterizations of PLA-PEG-PLA microspheres for controlled release of paclitaxel. Biomaterials 24,5037–5044 (2003).
  • Dong YC, Feng SS. Paclitaxel-loaded methoxy poly (ethylene glycol)-poly (lactide) (MPEG-PLA) nanoparticles by nanoprecipitation method. Biomaterials 25(14), 2843–2849 (2004).
  • Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel-loaded poly (lactic-co-glycolic acid) (PLGA) nanospheres prepared by the spray dry technique with phospholipids/cholesterol as additives. J. ControL Release 76,239–254 (2001).
  • Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent extraction/evaporation technique for fabrication of polymeric nanospheres for controlled release of paclitaxel. I Control. Release80, 129–144 (2002).
  • Mu L, Feng SS. A novel controlled release formulation for anticancer drug paclitaxel (Taxo13): PLGA nanoparticles containing vitamin E TPGS. J Control. Release 86(1), 33–48 (2003).
  • Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and the drug loading ratio. Pharm. Res. 20(11), 1864–1872 (2003).
  • Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int. J Pharm. 235(1–2), 179–192 (2002).
  • Liggins RT, Burt HM. Polyether-polyester diblock co-polymers for the preparation of paclitaxel-loaded polymeric micelle formulations. Adv. Drug Deily Rev 54(2), 191–202 (2002).
  • Kolodgie FD, John M, Khurana C et al Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106(10), 1195–1198 (2002).
  • Fonseca C, Simoes S, Gaspar RE. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro antitumoral activity. J. Control. Release 83(2), 273–286 (2002).
  • Potineni A, Lynn DM, Langer R et al. Poly (ethylene oxide)-modified poly(B-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery ControL Release 86(2–3), 223–234 (2003).
  • Verdun C, Brasseur F, Vranckx H et al Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer. Chemoth. Pharm. 26(1), 13–18 (1990).
  • Yoo HS, Lee KH, Oh JE et al In vitro and in vivo antitumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68 (3), 419–431 (2000).
  • Yoo HS, Oh JE, Lee KH et al Biodegradable nanoparticles containing doxorubicin—PLGA conjugate for sustained release. Pharm. Res. 16 (7), 1114–1118 (1999).
  • Yang SC, Ge HX, Hu Y et al Doxorubicin-loaded poly (butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. J. AppL Polym. Sci. 78(3), 517–526 (2000).
  • Janes KA, Fresneau MP, Marazuela A et al. Chitosan nanoparticles as delivery systems for doxorubicin. j ControL Release 73(2–3), 255–267 (2001).
  • Mitra S, Gaur U, Ghosh PC etal. Tumor targeted delivery of encapsulated dextran—doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release 74(1–3), 317–323 (2001).
  • Gelperina SE, Khalansky AS, Skidan IN et al Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. ToxicoL Lett. 126(2), 131–141 (2002).
  • Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil 1–125 sodium alginate-bovine serum albumin nanoparticles. World J. GastroenteroL 5(1) 57–60 (1999).
  • McCarron PA, Woolfson AD, Keating SM. Sustained release of 5-fluorouracil from polymeric nanoparticles. I Pharm. PharmacoL 52(12), 1451–1459 (2000).
  • Fishbein I, Chorny M, Rabinovich L et al. Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. Control. Release 65 (1–2), 221–229 (2000).
  • Fishbein I, Chorny M, Banai S et al Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. ArterioscL Throm. Vas. 21(9), 1434–1439 (2001).
  • Das GS, Rao GHR, Wilson RF etal. Controlled delivery of taxol from poly (ethylene glycol) -coatedpoly (lactic acid) microspheres. I Biomed. Mater. Res. 55(1), 96–103 (2001).
  • Chorny M, Fishbein I, Golomb G. Drug delivery systems for the treatment of restenosis. Crit. Rev Ther. Drug 17(3), 249–284 (2000).
  • Feng SS, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Invited review. Chem. Engr. Sci. 58,4087–4114 (2003).
  • Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anticancer drugs. Expert Rev MoL Med. 1, 1–21 (1999).
  • Hobbs SK, Monsky WL, Yuan F etal. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95,4607–4612 (1998).
  • Yuan F, Dellian M, Fukumura D et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55,3752–3756 (1995).
  • Unezaki S, Maruyama K, Hosoda JI et al. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int. J. Pharm. 144,11–17 (1996).
  • Jam KK. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. ControL Release 74,7-25 (2001C).
  • Malingre MM, Beijnen JH, Schellens JHM. Oral delivery of taxanes. Invest. New Drug 19(2), 155–162 (2001A).
  • Malingre MM, Schellens JHM, van Tellingen 0 et al Metabolism and excretion of paclitaxel after oral administration in combination with cyclosporin A and after iv. administration. Anticancer Drug 11(10) 813–820 (2000).
  • Malingre MM, Terwogt JMM, Beijnen JH et al. Phase I and pharmacokinetic study of oral paclitaxel. I Clin. OncoL 18(12), 2468–2475 (2000).
  • Zambaux MF, Bonneaux F, Gref R et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by double emulsion method. J ControL Release 50,31–40 (1998).
  • Couvreur P, Kante B, Roland M et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphology and sorptive properties. J Pharm. PharmacoL 31, 331–332 (1979).
  • Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles: A mechanistic study of polymerization and particle formation. Biomaterials 22(11), 1335–1344 (2001).
  • De TK, Hoffman AS. A reverse microemulsion polymerization method for preparation of bioadhesive polyacrylic acid nanoparticles for mucosal drug delivery: loading and release of timolol maleate. Artif. Cell. Blood Sub. 29(1), 31–46 (2001).
  • Desai MP, Labhasetwar V, Walter E et al The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceut. Res. 14 (11), 1568–1573 (1997).
  • McClean S, Prosser E, Meehan E et al. Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur. I Pharm. Sci. 6, 153–163 (1998).
  • Delie E Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv. Drug Deily. Rev 34,221–233 (1998).
  • Jung T, Kamm W, Breitenbach A et al Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. Pharm. Biopharm. 50,147–160 (2000).
  • De Jaeghere F, Allemann E, Leroux JC et al. Formulation and lyoprotection of poly (lactic acid-co-ethylene oxide) nanoparticles: Influence on physical stability and in vitro cell uptake. Pharm. Res. 16(6), 859–866 (1999).
  • Coester C, Kreuter J, von Briesen H et al. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int. J. Pharm. 196(2), 147–149 (2000).
  • Qaddoumi MG, Ueda H, Yang J et al The mechanism of uptake of biodegradable PLGA nanoparticles in conjunctival epithelial cell layers. Invest. Ophth. Vis. Sci. 42(4), 2628 (2001).
  • Behrens I, Pena AIV, Alonso MJ et al Comparative uptake studies of bioadhesive and nonbioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19(8), 1185–1193 (2002).
  • Pietzonka P, Rothen-Rutishauser B, Langguth P et al. Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptake. Pharrnaceut. Res. 19(5), 595–601 (2002).
  • Sakurai K, Nakada Y, Nakamura T et al. Preparation and characterization of polylactide-poly (ethylene glycol)-polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom. J MacromoL Sci. Pure 36(12), 1863–1877 (1999).
  • Tobio M, Sanchez A, Vila A et al The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloid Surface B18 (3–4), 315–323 (2000).
  • Chen DB, Yang TZ, Lu WL et al. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem. Pharm. Bull. 49(11), 1444–1447 (2001).
  • Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterization and in vivo evaluation. J ControL Release 70(3) 353–363 (2001).
  • Jiao YY, Ubrich N, Marchand-Arvier M etal. h7 vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 105(2), 230–235 (2002).
  • Au JLS, Jong SH, Wientjes MG. Clinical aspects of drug delivery to tumors. J. ControL Release 78(1–3), 81–95 (2002).
  • Au JLS, Jong SH, Zheng J et al Determinants of drug delivery and transport to solid tumors. J ControL Release 74(1–3), 31–46 (2001).
  • Loos WJ, Szebeni J, ten Tije AJ et al Preclinical evaluation of alternative pharmaceutical delivery vehicles for paclitaxel. Anticancer Drug 13(7), 767–775 (2002).
  • O'Connor PW, Lee L, Moscarello M et al A Phase I study of micellar paclitaxel in the treatment of secondary progressive multiple sclerosis. Ann. Neurol 46(3), 470–470 (1999).
  • Theresa MA, Pieter RC. Drug delivery systems: entering the mainstream. Science 303,1818–1822 (2004).
  • Kim SY, Lee YM, Baik DJ et al Toxic characteristics of methoxy poly(ethylene glycol)/poly (epsilon-caprolactone) nanospheres; in vitro and in vivo studies in the normal mice. Biomaterials 24 (1), 55–63 (2003).
  • Shabbits JA, Chiu GNC, Mayer LD. Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. J Control. Release 84(3), 161–170 (2002).
  • Khin YW, Feng SS. effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. In press (2004).
  • Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of effects of molecular weight and degree of deacetylation. Pharm. Res, 21(2), 344–353 (2004).
  • Ma Y, Lim LY. Mechanistic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cells. J Pharm. Sci. 93(1), 20–28 (2004).
  • Wilhelm C, Billotey C, Roger J et al Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24 (6), 1001–1011 (2003).

Websites

  • American Cancer Society, Statistics 2004 www.cancer.orgiclocroot/STT/stt_0.asp Accessed August, 2004
  • World Health Organization: Cancer www.who.inticancerieni Accessed August, 2004
  • World Health Organization www.who.org Accessed August, 2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.