848
Views
308
CrossRef citations to date
0
Altmetric
Original Articles

Bone reconstruction: from bioceramics to tissue engineering

, PhD
Pages 87-101 | Published online: 09 Jan 2014

References

  • Chapekar MS. Tissue engineering: challenges and opportunities. Biomed. Mater. Res. 53, 617–620 (2000).
  • Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Proceedings of the American Academy of Orthopaedic Surgeons. Park Ridge, IL, USA, 83–124 (1992).
  • Reeve J, Metz D. AgeNet workshop on ageing fragility and the biomechanics of bone. AgeNet Report 1–3 (1998).
  • Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin. Orthop. 71–86 (1999).
  • Vacanti CA, Bonassar LJ, Vacanti JP. Structural tissue engineering. In: Principles of Tissue Engineering. Second Edition. Lanza RP, Langer R, Vacanti J (Eds). Academic Press, San Diego, CA, USA (2000).
  • Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347–2359 (2000).
  • Passuti N, Daculsi G, Martin S. Macroporous calcium phosphate ceramics for long bone surgery in human and dogs- clinical and histological studies. In: Clinical Implant Materials. Heimke G, Soltesz U, Lee A (Eds). Elsevier Science Publishers, Amsterdam, The Netherlands, 255–258 (1990).
  • LeGeros RZ. Calcium calcium phosphatephosphate materials in restorative dentistry: a review. Adv. Dent. Res. 2(1), 164–180 (1988).
  • Ricci JL, Blumenthal NC, Spivak JM, Alexander H. Evaluation of a low-temperature calcium phosphate particulate implant material: physical-chemical properties and in vivo bone response. J. Oral Maxillo Facial Surg. 50, 969–978 (1992).
  • DeGroot K, Tencer A, Waite P, Nichols J, Kay J. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Dental and other head and neck uses. Ann. NY Acad. Sci. 523, 272–277 (1988).
  • Schepers E, Declercq M, Ducheyne P, Kempeneers R. Bioactive glass particulate material as a filler for bone lesions. J.Oral Rehab. 18, 439–452 (1991).
  • Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 2287–2303 (1999).
  • Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinderswith two different pore size ranges implanted in the cancellous bone of rabbits. Clin. Orthop. 232, 127–137 (1988).
  • de Groot K. Ceramics of calcium phosphates: preparation and properties. In: Bioceramics of calcium phosphate. CRC Press, FL, USA, 99–114 (1983).
  • Van Raemdonck W, Ducheyne P, De Meester P. Calcium calcium phosphatephosphate ceramics. In: Metal and ceramic biomaterials, Volume II. Strength and surface. Ducheyne P, Hastings GW (Eds). CRC Press, FL, USA, 143–166 (1984).
  • Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187–208 (1991).
  • Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/b-tricalcium phosphate ratios. Biomaterials 18, 1037–1041 (1997).
  • Jarcho M. Hydroxyapatitesynthesis and characterization in sense poly crystalline forms. J. Mater. Sci. 11, 2027–2035 (1976).
  • de Groot K. Ceramics of calcium phosphates: preparation and properties. In: Bioceramics of calcium phosphate. CRC Press, FL, USA, 99–114 (1983).
  • Nery E, LeGeros RZ, Lynch K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/TCP in periodontal osseous defects, J. Periodontol. 63, 729–735 (1992).
  • Oonishi H, Tsuji E, Ishimaru, Yamamoto M, Delecrin J. Clinical sginficance of chemical bonds between bioactive ceramics and bone in orthopedic surgery. In: Bioceramics, Volume 2. Heimke G (Ed.). German ceramic society, Cologne, 286–293 (1990).
  • Daculsi G, LeGeros RZ, Deudon C. Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics. Calcif. Tissue Int. 24, 471–488 (1990).
  • Galgut PN, Waite IM, Tinkler SMB. Histological investigation of the tissue response to hydroxyapatite used as implant material in periodontal treatment. Clin. Mater. 6, 105–121 (1990).
  • Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics. A case report. Int. J. Prio. Restor. Dent. 3, 223–233 (1986).
  • Quinn JH, Kent JN. Alveolar ridge maintenance with nonporous hydroxyapatite root implants. Oral. Surg. 58, 511–516 (1984).
  • Galgut PN, Waite IM, Tinkler SMB. Histological investigation of the tissue response to hydroxyapatite used as implant material in periodontal treatment. Clin. Mater. 6, 105–121 (1990).
  • Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17, 31–35 (1996).
  • Yamasaki H, Saki H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials 13, 308–312 (1992).
  • Toth JM, Lynch KL, Hackbarth DA. Ceramic-induced osteogenesis following subcutaneous implantation of calcium phosphates. Bioceramics 6, 9–13 (1993).
  • Klein CPAT, de Groot K, Chen W, Li Y, Zhang X. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials 15, 31–34 (1994).
  • Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 17, 2131–2137 (1996).
  • Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AI. Marrow cell-induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J. Biomed. Mater. Res. 24(12), 1563–1570 (1990).
  • Boyne PJ. Comparison of porous and nonporous hydroxyapatite and anorganic xenografts in the restoration of alveolar ridges. Proceedings of ASTM Symposium on Porous Implants. Nashville, TN, USA, 359–369 (1987).
  • Jarcho M. Calcium phophate ceramics as hard tissue prosthetics. Clin. Orthop. 157, 259–278 (1981).
  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121 (1997).
  • Huec JL, Schaeverbeke T, Clement D, Faber J, Rebeller AL. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16(2), 113–118 (1995).
  • Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. 44(4), 422–428 (1999).
  • Langstaff S, Sayer M, Smith TJ et al. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials 20(18), 1727–1741 (1999).
  • Langstaff S, Sayer M, Smith TJ, Pugh SM. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials 22(2), 135–150 (2001).
  • Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J. Biomed. Mater. Res. 59, 697–708 (2002).
  • Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J. Biomed. Mater. Res. 39, 603–610 (1998).
  • Blumenthal NC, Betts F, Posner AS. Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif. Tissue Res. 18, 81–90 (1975).
  • Bigi A, Cojazzi G, Panzavolta S et al. Chemical and structural characterization of the mineral phase from cortical and trabec-ular bone. J. Inorg. Biochem. 68, 45–51 (1997).
  • LeGeros RZ. Effect of carbonate on the lattice parameters of apatite. Nature 206, 403–404 (1965).
  • Jha LJ, Best SM, Knowles JC, Rehman I, Santos JD, Bonfield W. Preparation and characterization of fluoride-substituted apatites. J. Mater. Sci. Mater. Med. 8, 185–191 (1997).
  • Driessens FCM. The mineral in bone, dentin and tooth enamel. Bull. Soc. Chem. Belg. 89, 663 (1980).
  • Emerson WH, Fischer ED. The infrared absorption spectra of carbonate in calcified tissue. Arch. Oral Biol. 7, 671–683 (1962).
  • Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopic study. Calcif. Tissue Int. 45, 157–164 (1989).
  • Bonel G. Contribution a l’e´tude de la carbonation des apatites. Ann. Chim. 7, 127–144 (1972).
  • Wallaeys R. Study of carbonate apatite obtained by solid-state synthesis. In: Silicon, Sulfur, Phosphates. Coll. Int. Union Pure Appl. Chem. Mu¨nster. Weinheim:Verlag Chemi. 183–190 (1954).
  • Elliott JC. On the interpretation of the carbonate bands in the infrared spectrum of dental enamel. J. Dent. Res. 42, 1081 (1963).
  • Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T. Solubility product of OH-carbonated hydroxyapatite. J. Biomed. Mater. Res. 36, 522–528 (1997).
  • Nordstrom EG, Karlsson KH. Carbonate-doped hydroxyapatite. J. Mater. Sci. Mater. Med. 1, 182–184 (1990).
  • Nelson DGA, Featherstone JDB. Preparation, analysis and characterization of carbonated apatites. Calcif. Tissue Int. 34, S69–S81 (1982).
  • LeGeros RZ, Trautz OR, LeGeros JP, Klein E. Carbonate substitution in the apatite structure. Bull. Soc. Chim. France 1712–1718 (1968).
  • Vignoles M, Bonel G, Young RA. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatite. Calcif. Tissue Int. 40, 64–70 (1987).
  • Vignoles M, Bonel G, Holcomb DW, Young RA. Influence of preparation conditions on the composition of type-B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif. Tissue Int. 43, 33–40 (1988).
  • Doi Y, Moriwaki Y, Okazaki M, Takahashi J, Joshin K. Carbonate apatites from aqueous and nonaqueous media studied by ESR, IR and x‑ray diffraction: effect of NH4+ ions on crystallographic parameters. J. Dent. Res. 61, 429–434 (1982).
  • Barralet J. Processing and sintering of carbonate hydroxyapatite. PhD Thesis, University of London, UK (1995).
  • Driessens FCM, Verbeeck RMH, Heijligers HJM. Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorg. Chim. Acta 80, 19–23 (1983).
  • Barroug A, Rey C, Trombe JC, Montel G. The synthesis in aqueous media of AB carbonate apatite similar to dental enamel. C. R. Acad. Sci. Paris 292, 303–306 (1981).
  • Redey SA, Nardin M, Bernache-Assolant D et al. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J. Biomed. Mater. Res. 50, 353–364 (2000).
  • Patel N, Gibson IR, Hing KA et al. The in vivo response of phase pure hydroxyapatite and carbonate-substituted hydroxyapatite granules of varying size range. Bioceramics 14, 383–386 (2002).
  • Ruys AJ. Silicon-doped hydroxyapatite. J. Aust. Ceram. Soc. 29, 71–80 (1993).
  • Tanizawa Y, Suzuki T. X‑ray photoelectron spectroscopy study of silicate-containing apatite. Phosphorus Res. Bull. 4, 83–88 (1994).
  • Sugiyama K, Suzuki T, Satoh T. Bactericidal activity of silicate-containing hydroxyapatite. J. Antibact. Antifung. Agents 23, 67–71 (1995).
  • Boyer L, Carpena J, Lacout JL. Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ionics 95, 121–129 (1997).
  • Leshkivich KS, Monroe EA. Solubility characteristics of synthetic silicate sulfate apatites. J. Mater. Sci. 28, 9–14 (1993).
  • Gibson IR, Hing KA, Best SM, Bonfield W. Proceedings of the 12th International Symposium on Ceramics in Medicine. Japan. Ohgushi H, Hastings GE, Yoshikawa T (Eds). World Scientific Publishing Co. Ltd, London, UK, 191 (1999).
  • Patel N, Best SM, Bonfield W et al. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Mater. Sci. Mater. Med. 13(12), 1199–1206 (2002).
  • Porter AE, Best SM, Bonfield W. Ultrastructural comparison of hydroxyapatite and silicon-hydroxyapatite for biomedical applications. J. Biomed. Mater. Res. 68(1), 133–141 (2004).
  • Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24(25), 4609–4620 (2003).
  • Portera AE, Patela N, Skepperb JN, Besta SM, Bonfield W. Effect of sintered silicate-substituted hydroxyapatite on remodeling processes at the bone-implant interface. Biomaterials 25, 3303–3314 (2004).
  • Carlisle EM. Silicon: a possible factor in bone calcification. Science 167, 279–280 (1970).
  • Carlisle EM. Silicon as an essential element. Fed. Proc. 33, 1748 (1974).
  • Schwarz K, Chen SC. A bound form of silicon as a constituent of collagens. Fed. Proc. 33, 704 (1974).
  • Carlisle EM, Alpenfels WF. A requirement for silicon for bone growth in culture. Fed. Proc. 37, 1123 (1978).
  • Carlisle E. Silicon: a requirement in bone formation independent of vitamin D1. Calcif. Tissue Int. 33, 27–34 (1981).
  • Kim SR, Riu DH, Lee YJ, Kim YH. Synthesis and characterization of silicon substituted hydroxyapatite. Bioceramics 14, 218–220 (2002).
  • Anderson OH, Kangasniemi L. Calcium phosphate formation at the surface of bioactive glass in vitro. J. Biomed. Mater. Res. 25, 1019–1030 (1991).
  • Ogino M, Ohuchi F, Hench LL. Compositional dependence of the formation of calcium phosphatecalcium phosphate films on bioglass. J. Biomed. Mater. Res. 14, 55–64 (1980).
  • Klein CPAT, Dreissen AA, de Groot K, van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater. Res. 17, 769–784 (1983).
  • El-Ghannam A, Ducheyne P, Shapiro IM. Serum protein adsorption on bioactive ceramics and glasses and the effect on osteoblast adhesion. The 21st Annual Meeting of the Society for Biomaterials. San Francisco, CA, USA (1995).
  • El-Ghannam A, Ducheyne P, Shapiro IM. Effect of serum proteins on osteoblast adhesion to surface modified bioactive glass and hydroxyapatite. J. Orthop. Res. 17(3), 340–345 (1999).
  • García AJ, Ducheyne P, Boettiger D. Effect of surface reaction stage on fibronectin-mediated adhesion of fibroblast-like cells to bioactive glass. J. Biomed. Mater. Res. 40, 48–56 (1998).
  • Oonishi H, Yasukawa E, Iwaki H et al. Particulate Bioglass compared with hydroxyapatite as a bone graft substitute. J. Clin. Orthop. Rel. Res. 334, 316–325 (1997).
  • Fujishiro Y, Oonishi H, Hench LL. Quantitative comparison of in vivo bone generation with particulate Bioglass®. In: Bioceramics 10. Sedel L, Rwy C (Eds). Elsevier, NY, USA, 283–286 (1997).
  • Wilson J, Lowery G, Courtney S. Spinal fusion using titanium spacers with bioglass and autogenous bone: a comparative study in sheep. Bioceramics 10 (1997).
  • Schepers EJG, Ducheyne P, Barbier L et al. Bioactive glass particles of narrow size range: a new material for the repair of bone defects. Implant. Dent. 2, 151–156 (1993).
  • Shapoff CA, Alexander DC, Clark AE. Clinical use of bioactive glass particulate in the treatment of human osseous defects. Compodium 18, 352–363 (1997).
  • Stanley HR, Hall MB, Clark AE et al. Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int. J. Oral Maxillofac. Implants 12, 95–105 (1997).
  • Wilson J. Bioactive glass: clinical applications. In: An Introduction to Bioceramics. Hench LL, Wilson J (Eds). River Edge, NJ, World Scientific, 63–73 (1993).
  • Hench LL. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991).
  • Hench LL. Bioactive ceramics: theory and clinical applications. In: Bioceramics 7. Andersson OH, Yli-Urpo A (Eds). Butterworth-Heinemann Ltd., Oxford, UK, 3–16 (1994).
  • Keeting PE, Oursler MJ, Wiegand KE et al. Zeolite A increases proliferation, diffrentiation, and transforming growth factor-α production in normal adult human oseoblast-like cells in vitro. J. Bone Miner. Res. 7, 1281–1289 (1992).
  • Vrouwenvelder WC, Groot CG, de Groot K. Behavior of fetal rat osteoblasts cultured in vitro on bioactive glass and nonreactive glasses. Biomaterials 13, 382–392 (1992).
  • Carlisle EM. Silicon as an essential trace element in animal nutrition. In: Silicon Biochemistry, Ciba Foundation Symposium 121. Evered D (Ed.). John Wiley, NY, USA, 123–139 (1986).
  • Carlisle EM. Silicon: an essential element for the chick. Science 178, 619–621 (1972).
  • Hench LL. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991).
  • Hench LL, Andersson OH. An introduction to bioceramics. Hench L, Willson J (Eds). World Scientific 41–62 (1993).
  • Fllugieras RM, LaTorre G, Hench LL. Solution effects on the surface reactions of a bioactive glass. J. Biomed. Mater. Res. 27, 445–453 (1993).
  • Li P, Ohtusuki CT, Kokubo et al. Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass-ceramics. J. Appl. Biomater. 4, 221–229 (1993).
  • Hench LL. Stability of ceramics in the physiological environment. In: Fundamental Aspects of Biocompatibility, Volume 1. Williams DF (Ed.). CRC Press, FL, USA, 67–85 (1981).
  • Andersson OH, Rosenqvist J, Karlsson KH. Dissolution, leaching, and Al2O3 enrichment at the surface of bioactive glasses studied by solution analysis. J. Biomed. Mater. Res. 27, 941–948 (1993).
  • Zeng H, Chittur KK, Lacefield WR. Dissolution/reprecipitation of calcium phosphate thin films produced by ion beam sputter deposition technique. Biomaterials 20, 443–451 (1999).
  • Cannas M, Denicolai F, Webb LX, Gristi AG. Bioimplant surfaces: Binding of fibronectin and fibroblast adhesion. J. Orthop. Res. 6, 58–62 (1988).
  • Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature 262, 497–500 (1976).
  • Setiz TL, Noonan KD, Hench LL, Noonan NE. Effect of fibronectin on the adhesion of an established cell line to a surface reactive biomaterial. J. Biomed. Mater. Res. 16, 195–207 (1982)
  • Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow-derived mesenchemal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1, 23–32 (1992).
  • Hakkinen L, Yli-Urpo A, Heino J, Laijava H. Attachment and spreading of human gingival fibroblasts on potentially bioactive glasses in vitro. J. Biomed. Mater. Res. 22, 1043–1059 (1988).
  • Horbett TA, Schway MB. Correlation between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethylacrylate-ethylmethylacrylat copolymers. J. Biomed. Mater. Res. 22, 763–793 (1988).
  • El-Ghannam A, Ducheyne P, Shapiro IM. Bioactive material template for in vitro synthesis of bone. J. Biomed. Mater. Res. 29(3), 359–370 (1995).
  • El-Ghannam A, Ducheyne P, Shapiro IM. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials 18, 295–303 (1997).
  • El-Ghannam A, Ducheyne P, Shapiro I. Bioactive glass templates for the synthesis of bone-like tissue in vitro. In: Biomaterials for cell and drug delivery. Mikos AG, Murphy RM, Bernstein H, Peppas NA (Eds). Materials Research Society, Pittsburgh, 257–262 (1994).
  • El-Ghannam A, Ducheyne P, Shapiro IM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J. Biomed. Mater. Res. 36, 167–180 (1997).
  • El-Ghannam A, Abushusha T, El-Bargeesy G, Shama A, El-Negmy D. Effect of surface chemistry on bone tissue regeneration in cortical bone defect filled with bioactive glass. Sixth World Biomaterials Congress Transaction 146 (2000).
  • Ripamonti U, Ma S-S, Heever B, Reddi AH. Osteogenin, a bone morphogenic protein, absorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates. Plas. Reconstr. Surg. 90, 382–393 (1992).
  • Ono I, Gunji H, Kaneko F, Saito T, Kuboki Y. Efficacy of hydroxyapatite ceramics as a carrier of recombinant human bone morphogetic protein. J. Craniofac. Surg. 6, 238–244 (1995).
  • Urist MR, Nilsson O, Rasmussen J et al. Bone regeneration under the influence of a bone morphogenetic protein (BMP) β-tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clin. Orthop. Rel. Res. 214, 295–304 (1986).
  • Ono I, Ohura T, Murata M et al. A study on bone induction in hydroxyapatite combined with bone morphogenetic protein. Plast. Reconstr. Surg. 90, 870–879 (1992).
  • Miller TA, Ishida K, Kobayashi M et al. The induction of bone by an osteogenic protein and the conduction of bone by porous hydroxyapatite: a laboratory study in the rabbit. Plast. Reconstr. Surg. 87, 87–95 (1991).
  • Urist MR, Lietze A, Dawson E. β-tricalcium phosphate delivery system for bone morphogenetic protein. Clin. Orthop. 157, 259–277 (1981).
  • Takaoka T, Nakahara H, Yoshikawa H et al. Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin. Orthop. 234, 250–254 (1989).
  • Ono T, Tateshita T, Inoue M, Kuboki Y. In vivo strength enhancement of hydroxyapatite combined with rhBMP-2. J. Bone Miner. Metab. 16, 81–87 (1998).
  • Watanabe M, Harada K, Asahina I, Enomoto S. Implantation of hydroxyapatite granules mixed with atelocollagen and bone inductive protein in rat skull defects. In: CRC handbook of bioactive ceramics, Volume II. Yamamuro T, Hench LL, Wilson J (Eds). CRC Press, FL, USA, 223–228 (1990).
  • Ohgushi H, Okumura M, Masuhara K et al. Osteogenic potential of bone marrow sustained by porous calcium phosphate ceramics. In: CRC handbook of bioactive ceramics, Volume II. Yamamuro T, Hench LL, Wilson J (Eds). CRC Press, FL, USA, 229–233 (1990).
  • Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal derived cells exhibit potential in porous calcium phosphate ceramics in vivo. Clin. Orthop. Rel. Res. 276, 291–298 (1992).
  • Goshima J, Goldberg VM, Caplan AI. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin. Orthop. Rel. Res. 269, 274–283 (1992).
  • Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. Rel. Res. 262, 298–311 (1991).
  • Jingushi S, Scully SP, Joyce ME, Sugioka Y, Bolander ME. Transforming growth factor-α 1 and fibroblast growth factors in rat growth plate. J. Orthop. Res. 13, 761–768 (1995).
  • Scherping SCJ, Schmidt CC, Georgescu HI et al. Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Connect. Tissue Res. 36, 1–8 (1997).
  • Nixon AJ, Lillich JT, Burton-Wurster N, Lust G, Mohammed HO. Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-α. J. Orthop. Res. 16, 531–541 (1998).
  • Pfeilschifter J, Diel I, Pilz U et al. Mitogenic responsiveness of human bone cells in vitro to hormones and growth factors decreases with age. J. Bone Miner. Res. 8, 707–717 (1993).
  • Thaller SR, Dart A, Tesluk H. The effects of insulin-like growth factor-1 on critical-size calvarial defects in Sprague-Dawley rats. Ann. Plast. Surg. 31, 429–433 (1993).
  • Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol. Reprod. Dev. 32, 160–167 (1992).
  • Reddi AH. Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr. Opin. Cell. Biol. 4, 850–855 (1992).
  • Urist MR. Bone morphogenetic protein: the molecularization of skeletal system development. J. Bone Miner. Res. 12(3), 343–346 (1997).
  • Ferguson D, Davis WL, Urist MR, Hurt WC, Allen EP. Bovine bone morphogenetic protein (bBMP) fracture-induced repair of craniotomy defects in the rhesus monkey (Macaca speciosa). Clin. Orthop. Rel. Res. 219, 251–258 (1987).
  • Heckman JD, Boyan BD, Aufdemorte TB, Abbott JT. The use of bone morphogenetic protein in the treatment of nonunion in a canine model. J. Bone Joint Surg. 73A, 750–764 (1991).
  • Johnson EE, Urist MR, Finerman GAM. Bone morphogenetic protein augmentation grafting of resistant femoral nonunions: a preliminary report. Clin. Orthop. 230, 257–265 (1988).
  • Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-extracted, allogeneic bone. Clin. Orthop. Rel. Res. 277, 229–237 (1992).
  • Johnson EE, Urist MR, Finerman GA. Distal metaphyseal tibial nonunion. Deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (hBMP). Clin. Orthop. Rel. Res. 250, 234–240 (1990).
  • Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GA. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J. Bone Joint Surg. 68B, 635–642 (1986).
  • Takagi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann. Surg. 196, 100–109 (1982).
  • Asahina I, Watanabe M, Sakurai N, Mori M, Enomoto S. Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite. J. Med. Dent. Sci. 44, 63–70 (1997).
  • Cunningham BW, Kanayama M, Parker LM et al. Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24, 509–518 (1999).
  • Gao TJ, Lindholm TS, Kommonen B et al. Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and Type IV collagen. J. Biomed. Mater. Res. 32, 505–512 (1996).
  • Gao T, Lindholm TS, Marttinen A, Urist MR. Composites of bone morphogenetic protein (BMP) and Type IV collagen, coral-derived coral hydroxyapatite, and tricalcium phosphate ceramics. Int. Orthop. 20, 321–325 (1996).
  • Gerhart TN, Kirker-Head CA, Kriz MJ et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin. Orthop. Rel. Res. 293, 317–326 (1993).
  • Johnson EE, Urist MR, Finerman GA. Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin. Orthop. Rel. Res. 236, 249–257 (1988).
  • Koempel JA, Patt BS, O’Grady K et al. The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J. Biomed. Mater. Res. 41, 359–363 (1998).
  • Levine JP, Bradley J, Turk AE et al. Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit. Ann. Plastic Surg. 39, 158–168 (1997).
  • Linde A, Hedner E., Recombinant bone morphogenetic protein-2 enhances bone healing, guided by osteopromotive e-PTFE membranes: an experimental study in rats. Calcif. Tissue Int. 56, 549–553 (1995).
  • Miyamoto S, Takaoka K, Ono K. Bone induction in monkeys by bone morphogenetic protein. A transfilter technique. J. Bone Joint Surg. Br. 75, 107–110 (1993).
  • Sandhu HS, Kanim LE, Toth JM et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 without decortication of osseous elements (published erratum appears in Spine 22[20], 2463 [1997]). Spine 22, 1171–1180 (1997).
  • Suzawa M, Takeuchi Y, Fukumoto S et al. Extracellular matrix-associated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro. Endocrinology 140, 2125–2133 (1999).
  • Takahashi T, Tominaga T, Watabe N et al. Use of porous hydroxyapatite graft containing recombinant human bone morphogenetic protein-2 for cervical fusion in a caprine model. J. Neurosurg. 90, 224–230 (1999).
  • Yasko AW, Lane JM, Fellinger EJ et al. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats (published erratum appears in J. Bone Joint Surg. Am. 74[7], 1111 [1992]). J. Bone Joint Surg. Am. 74, 659–670 (1992).
  • Croteau S, Rauch F, Silvestri A, Hamdy RC. Bone morphogenetic proteins in orthopaedics: from basic science to clinical practice. Orthopaedics 22, 686–695 (1999).
  • DeGroot J. Carriers that concentrate native bone morphogenetic protein in vivo. Tissue Eng. 4, 337–341 (1998).
  • Bostrom MP, Camacho NP. Potential role of bone morphogenetic proteins in fracture healing. Clin. Orthop. Rel. Res. 355(Suppl.), S274–S282 (1998).
  • Whang K, Tsai DC, Nam EK et al. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J. Biomed. Mater. Res. 42, 491–499 (1998).
  • Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22, 591–603 (1998).
  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121, 317–324 (1997).
  • Miyamoto S, Takaoka K, Okada T et al. Polylactic acid-polyethylene glycol block copolymer. A new biodegradable synthetic carrier for bone morphogenetic protein. Clin. Orthop. Rel. Res. 294, 333–343 (1993).
  • Harakas NK. Demineralized bone-matrix-induced osteogenesis. Clin. Orthop. Rel. Res. 188, 239–251 (1984).
  • Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnol. 16, 247–252 (1998).
  • Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopaedics 18, 1153–1158 (1995).
  • Ripamonti U, Duneas N. Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg. 101, 227–239 (1998).
  • Urist MR, Dawson E. Intertransverse process fusion with the aid of chemosterilized autolyzed antigen-extracted allogeneic (AAA) bone. Clin. Orthop. Rel. Res. 154, 97–113 (1980).
  • Johnson EE, Urist MR. One-stage lengthening of femoral nonunion augmented with human bone morphogenetic protein. Clin. Orthop. Rel. Res. 347, 105–116 (1998).
  • Horisaka Y, Okamoto Y, Matsumoto N et al. Subperiosteal implantation of bone morphogenetic protein adsorbed to hydroxyapatite. Clin. Orthop. 268, 303–312 (1991).
  • Doll BA, Towle HJ, Hollinger JO, Reddi AH, Mellonig JT. The osteogenic potential of two composite graft systems using osteogenin. J. Periodontol. 61, 745–750 (1990).
  • Alam IM, Izumi A, Ohmamiuda K, Enomoto S. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J. Biomed. Mater. Res. 54, 129–138 (2001).
  • Nicoll SB, Radin S, Santos EM, Tuan RS, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-α1 from a novel porous glass carrier. Biomaterials 18, 853–859 (1997).
  • Santos EM, Radin S, Shenker BJ, Shapiro IM, Ducheyne P. Si-Ca-P xerogels and bone morphogenetic protein act synergetically on rat stromal marrow cell differentiation in vitro. J. Biomed. Mater. Res. 41, 87–94 (1998).
  • Ahmed El-Ghannam. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J. Biomed. Mater. Res. 69A(3), 490–501 (2004).
  • El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J. Biomed. Mater. Res. Online (2004).
  • Gao T, Aro HT, Ylanen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22, 1475–1483 (2001).
  • Dennis JE, Konstantakos EK, Arm D, Caplan AI. In vivo osteogenesis assay: a rapid method for quantitative analysis. Biomaterials 19, 1323–1328 (1998).
  • Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J. Biomed. Mater. Res. 48, 913–927 (1999).
  • Perka C, Schultz O, Spitzer RS et al. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21, 1145–1153 (2000).
  • Friedenstein AJ. Precursor cells of mechanocytes. Int. Rev. Cytol. 47, 327–359 (1976).
  • Triffitt JT, Oreffo ROC. Osteoblast lineage. In: Advances in Organ Biology. Molecular and Cellular Biology of Bone, Advances in Organ Biology Series. Volume 5B. Zaidi M (Ed.), 429–451 (1998).
  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).
  • Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: Implications for osteopenic disorders. J. Bone Miner. Res. 13, 371–382 (1998).
  • Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone 24, 549–554 (1999).
  • Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6, 125–134 (1997).
  • Ashton BA, Allen TD, Howlett CR et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. 151, 294–307 (1980).
  • Gundle R, Joyner CJ, Triffitt JT. Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16, 597–601 (1995).
  • Nakahara H, Bruder SP, Haynesworth SE et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11, 181–188 (1990).
  • Ohgushi H, Goldberg VM, Caplan AI. Heterotopic osteogenesis in porous ceramics induced by marrow cells. J. Orthop. Res. 7, 568–578 (1989).
  • Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78, 55–62 (1991).
  • Stewart K, Walsh S, Screen J et al. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J. Bone Miner. Res. 14, 1345–1356 (1999).
  • Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem. 64, 278–294 (1997).
  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64, 295–312 (1997).
  • Joyner CJ, Bennett A, Triffitt JT. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 21, 1–6 (1997).
  • Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplant ability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med. 5, 309–313 (1999).
  • Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin. Orthop. 313, 8–18 (1995).
  • Quarto R, Mastrogiacomo M, Cancedda R et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344, 385–386 (2001).
  • Allay JA, Dennis JE, Haynesworth SE et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum. Gene Ther. 8, 1417–1427 (1997).
  • Lee K, Majumdar MK, Buyaner D et al. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol. Ther. 3, 857–866 (2001).
  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 164, 295–312 (1997).
  • Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone 17, S77–S83 (1995).
  • Karsenty G. Bone formation and factors affecting this process. Matrix Biol. 19, 85–89 (2000).
  • Long MW. Osteogenesis and bone-marrow-derived cells. Blood Cells Mol. Dis. 27, 677–690 (2001).
  • Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. J. Biomed. Mater. Res. 32, 481–492 (1996).
  • Niedzwiedzki T, Dabrowski Z, Miszta H, Pawlikowski M. Bone healing after bone marrow stromal cell transplantation to the bone defect. Biomaterials 14, 115–121 (1993).
  • Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6, 125–134 (1997).
  • Boyan BD, Caplan AI, Heckman JD et al. Osteochondral progenitor cells in acute and chronic canine nonunions. J. Orthop. Res. 17, 246–255 (1999).
  • Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic: experiments in rats. Acta Orthop. Scand. 60, 334–339 (1989).
  • Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J. Cell. Physiol. 146, 370–378 (1991).
  • Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev. Biol. 161, 218–228 (1994).
  • Katagiri T, Yamaguchi A, Ikeda T et al. The nonosteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 172, 295–299 (1990).
  • Yang Z, Yuan H, Tong W et al. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 17, 2131–2137 (1996).
  • Merten HA, Wiltfang J, Grohmann U, Hoenig JF. Intraindividual comparative animal study of alpha- and -tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J. Craniofac. Surg. 12, 59–68 (2001).
  • Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterial 23(2), 407–412 (2002).
  • Saito M, Shimizu H, Beppu M, Takagi M. The role of α-tricalcium phosphate in vascularized periosteum. J. Orthop. Sci. 5, 275–282 (2000).
  • Schliephake H, Kage T. Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. J. Biomed. Mater. Res. 56, 128–136 (2001).
  • Nicholas RW, Lange TA. Granular tricalcium phosphate grafting of cavitary lesions in human bone. Clin. Orthop. 306, 197–203 (1994).
  • Tancred DC, McCormack BA, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 19, 2303–2311 (1998).
  • Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/ TCP in periodontal osseous defects. J. Periodontol. 63, 729–735 (1992).
  • Johnson KD, Frierson KE, Keller TS et al. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J. Orthop. Res. 14, 351–369 (1996).
  • Krebsbach PH, Kuznetsov SA, Satomura K et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059–1069 (1997).
  • Wang J, Chen W, Li Y et al. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials 19, 1387–1392 (1998).
  • Yokoyama N, Minabe M, Sugaya A et al. Application of tricalcium phosphate to periodontal therapy. Part 1. Fundamental studies and biological tests of TCP prepared by mechanochemical method. Nippon Shishubyo Gakkai Kaishi 31, 213–223 (1989).
  • Sandhu HS. Bone morphogenetic proteins and spinal surgery. Spine 28(15), S64–S73 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.