62
Views
6
CrossRef citations to date
0
Altmetric
Review

Alternative bearing surfaces in total hip arthroplasty

&
Pages 445-452 | Published online: 09 Jan 2014

References

  • Lawrence RC, Helmick CG, Arnett FC et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41, 778–799 (1998).
  • Huo MH, Muller MS. What’s new in hip arthroplasty. J. Bone Joint Surg. Am. 86A, 2341–2353 (2004).
  • Huo MH, Brown BS. What’s new in hip arthroplasty. J. Bone Joint Surg. Am. 85A, 1852–1864 (2003).
  • Furnes O, Havelin LI, Espehaug B et al. The Norwegian registry of joint prostheses-15 beneficial years for both the patients and the healthcare. Tidsskr. Nor. Laegeforen. 123, 1367–1369 (2003).
  • Harris WH. The problem is osteolysis. Clin. Orthop. 311, 46–53 (1995).
  • Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprosthetic osteolysis. Instr. Course Lect. 50, 185–195 (2001).
  • McKellop HA, Campbell P, Park SH et al. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin. Orthop.311, 3–20 (1995).
  • Schmalzried TP, Callaghan JJ. Wear in total hip and knee replacements. J. Bone Joint Surg. Am. 81, 115–136 (1999).
  • Schmalzried TP, Kwong LM, Jasty M et al. The mechanism of loosening of cemented acetabular components in total hip arthroplasty. Analysis of specimens retrieved at autopsy. Clin. Orthop. 274, 60–78 (1992).
  • Harris WH, Muratoglu OK. A review of current cross-linked polyethylenes used in total joint arthroplasty. Clin. Orthop. 430, 46–52 (2005).
  • McKellop HA. Bearing surfaces in total hip replacements: state of the art and future developments. Instr. Course Lect. 50, 165–179 (2001).
  • Sochart DH. Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin. Orthop. 363, 135–150 (1999).
  • Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. Recipient of the 1999 HAP Paul Award. J. Arthroplasty 16, 149–160 (2001).
  • Pryor GA, Villar RN, Coleman N. Tissue reaction and loosening of carbon-reinforced polyethylene arthroplasties. J. Bone Joint Surg. Br. 74, 156–157 (1992).
  • Pienkowski D, Patel A, Lee KY et al. Solubility changes in shelf-aged ultra-high molecular weight polyethylene acetabular liners. J. Long Term Eff. Med. Implants 9, 273–288 (1999).
  • McKellop H, Shen FW, DiMaio W, Lancaster JG. Wear of γ-crosslinked polyethylene acetabular cups against roughened femoral balls. Clin. Orthop. 369, 73–82 (1999).
  • Sharkey PF, Hozack WJ, Dorr LD, Maloney WJ, Berry D. The bearing surface in total hip arthroplasty: evolution or revolution. Instr. Course Lect. 49, 41–56 (2000).
  • McKellop HA, Shen FW, Campbell P, Ota T. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator. J. Orthop. Res. 17, 329–339 (1999).
  • Oonishi H, Clarke IC, Yamamoto K et al. Assessment of wear in extensively irradiated UHMWPE cups in simulator studies. J. Biomed. Mater. Res. A. 68, 52–60 (2004).
  • Grobbelaar CJ, Weber FA, Spirakis A et al. Clinical experience with γ-irradiation crosslinked polyethylene. A 14 to 20 year follow-up report. SA Bone Joint Surg. 9, 140–147 (1999).
  • Grobbelaar CJ, du Plessis TA, Marais F. The radiation improvement of polyethylene prostheses. A preliminary study. J. Bone Joint Surg. Br. 60B, 370–374 (1978).
  • Muratoglu OK, Bragdon CR, O’Connor DO et al. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20, 1463–1470 (1999).
  • Oonishi H, Takayama Y, Tsuji E. Improvement of polyethylene by irradiation in artificial joints. Radiat. Phys. Chem. 39, 495–504 (1992).
  • Gomoll A, Wanich T, Bellare A. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J. Orthop. Res. 20, 1152–1156 (2002).
  • Heisel C, Silva M, Schmalzried TP. Bearing surface options for total hip replacement in young patients. Instr. Course Lect. 53, 49–65 (2004).
  • Shen FW, McKellop H. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls. Clin. Orthop.430, 80–88 (2005).
  • Muratoglu OK, Delaney J, O’Connor DO, Harris WH. The use of trans-vinylene formation in quantifying the spatial distribution of electron beam penetration in polyethylene. Single-sided, double-sided and shielded irradiation. Biomaterials 24, 2021–2029 (2003).
  • Colwell CW, Hermida JH, Bergula A, Chen PC, D’Lima DD. Effect of head size and crosslinking on wear in polytheylene acetabular components. Trans AAHKS. 11, 46 (2001).
  • Livermore J, Ilstrup D, Morrey B. Effect of femoral head size on wear of the polyethylene acetabular component. J. Bone Joint Surg. Am. 72, 518–528 (1990).
  • Burroughs BR, Golladay GJ, Hallstrom B, Harris WH. A novel constrained acetabular liner design with increased range of motion. J. Arthroplasty 16, 31–36 (2001).
  • Burroughs BR, Rubash HE, Harris WH. Femoral head sizes larger than 32 mm against highly cross-linked polyethylene. Clin. Orthop. 405, 150–157 (2002).
  • McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J. Orthop. Res. 17, 157–167 (1999).
  • Willert HG, Buchhorn GH, Gobel D et al. Wear behavior and histopathology of classic cemented metal-on-metal hip endoprostheses. Clin. Orthop. 329(Suppl.), S160–S186 (1996).
  • Amstutz HC, Grigoris P. Metal on metal bearings in hip arthroplasty. Clin. Orthop. 329(Suppl.), S11–S34 (1996).
  • Bentley G, Duthie RB. A comparative review of the McKee-Farrar and Charnley total hip prostheses. Clin. Orthop. 95, 127–142 (1973).
  • Charnley J, Cupic Z. The nine and ten year results of the low-friction arthroplasty of the hip. Clin. Orthop. 95, 9–25 (1973).
  • Schmalzried TP, Peters PC, Maurer BT, Bragdon CR, Harris WH. Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces. J. Arthroplasty 11, 322–331 (1996).
  • Silva M, Heisel C, Schmalzried TP. Metal-on-metal total hip replacement. Clin. Orthop. 430, 53–61 (2005).
  • Ma SM, Kabo JM, Amstutz HC. Frictional torque in surface and conventional hip replacement. J. Bone Joint Surg. Am. 65, 366–370 (1983).
  • Volz RG, Wilson RJ. Factors affecting the mechanical stability of the cemented acetabular component in total hip replacement. J. Bone Joint Surg. Am. 59, 501–504 (1977).
  • Schmidt M, Weber H, Schon R. Cobalt chromium molybdenum metal combination for modular hip prostheses. Clin. Orthop. 329(Suppl.), S35–S47 (1996).
  • McKellop H, Park SH, Chiesa R et al. In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin. Orthop. 329(Suppl.), S128–S140 (1996).
  • Santavirta S, Bohler M, Harris WH et al. Alternative materials to improve total hip replacement tribology. Acta Orthop. Scand. 74, 380–388 (2003).
  • Jacobsson SA, Djerf K, Wahlstrom O. Twenty-year results of McKee-Farrar versus Charnley prosthesis. Clin. Orthop. 329(Suppl.), S60–S68 (1996).
  • Jacobsson SA, Djerf K, Wahlstrom O. A comparative study between McKee-Farrar and Charnley arthroplasty with long-term follow-up periods. J. Arthroplasty 5, 9–14 (1990).
  • Wagner M, Wagner H. Medium-term results of a modern metal-on-metal system in total hip replacement. Clin. Orthop. 379, 123–133 (2000).
  • Wagner M, Wagner H. Preliminary results of uncemented metal on metal stemmed and resurfacing hip replacement arthroplasty. Clin. Orthop. 329(Suppl.), S78–S88 (1996).
  • Weber BG. Experience with the Metasul total hip bearing system. Clin. Orthop. 329(Suppl.), S69–S77 (1996).
  • Streicher RM, Semlitsch M, Schon R, Weber H, Rieker C. Metal-on-metal articulation for artificial hip joints: laboratory study and clinical results. Proc. Inst. Mech. Eng. (H) 210, 223–232 (1996).
  • Chan FW, Bobyn JD, Medley JB et al. Engineering issues and wear performance of metal on metal hip implants. Clin. Orthop. 333, 96–107 (1996).
  • Medley JB, Chan FW, Krygier JJ, Bobyn JD. Comparison of alloys and designs in a hip simulator study of metal on metal implants. Clin. Orthop. 329(Suppl.), S148–S159 (1996).
  • Chan FW, Bobyn JD, Medley JB, Krygier JJ, Tanzer M. The Otto Aufranc Award. Wear and lubrication of metal-on-metal hip implants. Clin. Orthop. 369, 10–24 (1999).
  • Dorr LD, Wan Z, Longjohn DB, Dubois B, Murken R. Total hip arthroplasty with use of the Metasul metal-on-metal articulation. Four to seven-year results. J. Bone Joint Surg. Am. 82, 789–798 (2000).
  • Naudie D, Roeder CP, Parvizi J et al. Metal-on-metal versus metal-on-polyethylene bearings in total hip arthroplasty: a matched case-control study. J. Arthroplasty 19, 35–41 (2004).
  • Doorn PF, Campbell PA, Worrall J et al. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 42, 103–111 (1998).
  • Haynes DR, Boyle SJ, Rogers SD, Howie DW, Vernon-Roberts B. Variation in cytokines induced by particles from different prosthetic materials. Clin. Orthop. 352, 223–230 (1998).
  • Howie DW, Rogers SD, McGee MA, Haynes DR. Biologic effects of cobalt chrome in cell and animal models. Clin. Orthop. 329(Suppl.), S217–S232 (1996).
  • Lee SH, Brennan FR, Jacobs JJ et al. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J. Orthop. Res. 15, 40–49 (1997).
  • Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Human monocyte response to particulate biomaterials generated in vivo and in vitro. J. Orthop. Res. 13, 792–801 (1995).
  • Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19, 2297–2302 (1998).
  • Willert HG, Semlitsch M. Tissue reactions to plastic and metallic wear products of joint endoprostheses. Clin. Orthop.333, 4–14 (1996).
  • Willert HG, Buchhorn GH, Fayyazi A et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J. Bone Joint Surg. Am. 87, 28–36 (2005).
  • Skipor AK, Campbell PA, Patterson LM et al. Serum and urine metal levels in patients with metal-on-metal surface arthroplasty. J. Mater. Sci. Mater. Med. 13, 1227–1234 (2002).
  • Jacobs JJ, Skipor AK, Patterson LM et al. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J. Bone Joint Surg. Am. 80, 1447–1458 (1998).
  • Jacobs JJ, Urban RM, Gilbert JL et al. Local and distant products from modularity. Clin. Orthop. 319, 94–105 (1995).
  • Brodner W, Bitzan P, Meisinger V et al. Elevated serum cobalt with metal-on-metal articulating surfaces. J. Bone Joint Surg. Br. 79, 316–321 (1997).
  • Heisel C, Silva M, Skipor AK, Jacobs JJ, Schmalzried TP. The relationship between activity and ions in patients with metal-on-metal bearing hip prostheses. J. Bone Joint Surg. Am. 87, 781–787 (2005).
  • Jacobs JJ, Skipor AK, Doorn PF et al. Cobalt and chromium concentrations in patients with metal on metal total hip replacements. Clin. Orthop. 329(Suppl.), S256–S263 (1996).
  • Freeman MA, Swanson SA, Heath JC. Study of the wear particles produced from cobalt-chromium-molybdenum-manganese total joint replacement prostheses. Ann. Rheum. Dis. 28(Suppl.), 29 (1969).
  • Heath JC, Freeman MA, Swanson SA. Carcinogenic properties of wear particles from prostheses made in cobalt-chromium alloy. Lancet 1, 564–566 (1971).
  • Visuri T, Koskenvuo M. Cancer risk after Mckee-Farrar total hip replacement. Orthopedics 14, 137–142 (1991).
  • Visuri T, Pukkala E, Paavolainen P, Pulkkinen P, Riska EB. Cancer risk after metal on metal and polyethylene on metal total hip arthroplasty. Clin. Orthop. 329(Suppl.), S280–S289 (1996).
  • Hannouche D, Hamadouche M, Nizard R et al. Ceramics in total hip replacement. Clin. Orthop. 430, 62–71 (2005).
  • Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev. Chir. Orthop. Reparatrice Appar. Mot. 58, 229–246 (1972).
  • Mittelmeier H, Heisel J. Sixteen-years experience with ceramic hip prostheses. Clin. Orthop. 282, 64–72 (1992).
  • Sedel L, Nizard RS, Kerboull L, Witvoet J. Alumina-alumina hip replacement in patients younger than 50 years old. Clin. Orthop. 298, 175–183 (1994).
  • Walter A. On the material and the tribology of alumina-alumina couplings for hip joint prostheses. Clin. Orthop. 282, 31–46 (1992).
  • Mahoney OM, Dimon JH III. Unsatisfactory results with a ceramic total hip prosthesis. J. Bone Joint Surg. Am. 72, 663–671 (1990).
  • Boutin P, Christel P, Dorlot JM et al. The use of dense alumina-alumina ceramic combination in total hip replacement. J. Biomed. Mater. Res. 22, 1203–1232 (1988).
  • Prudhommeaux F, Hamadouche M, Nevelos J et al. Wear of alumina-on-alumina total hip arthroplasties at a mean 11-year follow-up. Clin. Orthop. 379, 113–122 (2000).
  • Heimke G, Griss P. Five years experience with ceramic-metal-composite hip endoprostheses. II. Mechanical evaluations and improvements. Arch. Orthop. Trauma Surg. 98, 165–171 (1981).
  • Willmann G. Ceramics for total hip replacement-what a surgeon should know. Orthopedics 21, 173–177 (1998).
  • Willmann G, Kramer U. Ceramic cups for hip endoprostheses. 5: consideration of designs. Biomed. Tech. (Berl). 43, 342–349 (1998).
  • Bohler M, Mochida Y, Bauer TW, Plenk H Jr, Salzer M. Wear debris from two different alumina-on-alumina total hip arthroplasties. J. Bone Joint Surg. Br. 82, 901–909 (2000).
  • Clarke IC, Good V, Williams P et al. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc. Inst. Mech. Eng. (H). 214, 331–347 (2000).
  • Fritsch EW, Gleitz M. Ceramic femoral head fractures in total hip arthroplasty. Clin. Orthop. 328, 129–136 (1996).
  • Piconi C, Labanti M, Magnani G et al. Analysis of a failed alumina THR ball head. Biomaterials 20, 1637–1646 (1999).
  • D’Antonio J, Capello W, Manley M, Bierbaum B. New experience with alumina-on-alumina ceramic bearings for total hip arthroplasty. J. Arthroplasty 17, 390–397 (2002).
  • Cales B. Zirconia as a sliding material: histologic, laboratory, and clinical data. Clin. Orthop.379, 94–112 (2000).
  • Drouin JM, Cales B, Chevalier J, Fantozzi G. Fatigue behavior of zirconia hip joint heads: experimental results and finite element analysis. J. Biomed. Mater. Res. 34, 149–155 (1997).
  • Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J. Biomed. Mater. Res. 23, 45–61 (1989).
  • Willmann G, Fruh HJ, Pfaff HG. Wear characteristics of sliding pairs of zirconia (Y-TZP) for hip endoprostheses. Biomaterials 17, 2157–2162 (1996).
  • Allain J, Le Mouel S, Goutallier D, Voisin MC. Poor eight-year survival of cemented zirconia-polyethylene total hip replacements. J. Bone Joint Surg. Br. 81, 835–842 (1999).
  • Norton MR, Yarlagadda R, Anderson GH. Catastrophic failure of the Elite Plus total hip replacement, with a Hylamer acetabulum and Zirconia ceramic femoral head. J. Bone Joint Surg. Br. 84, 631–635 (2002).
  • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 20, 1–25 (1999).
  • Hummer CD III, Rothman RH, Hozack WJ. Catastrophic failure of modular zirconia-ceramic femoral head components after total hip arthroplasty. J. Arthroplasty 10, 848–850 (1995).
  • Chevalier J, Drouin JM, Cales B. Low temperature ageing behaviour of zirconia hip joint heads. In: Bioceramics 10. Sedel L, Rey C (Eds). Elsevier, Amsterdam, The Netherlands, 135–137 (1977).
  • Affatato S, Testoni M, Cacciari GL, Toni A. Mixed oxides prosthetic ceramic ball heads. Part 1: effect of the ZrO2 fraction on the wear of ceramic on polythylene joints. Biomaterials 20, 971–975 (1999).
  • Affatato S, Testoni M, Cacciari GL, Toni A. Mixed-oxides prosthetic ceramic ball heads. Part 2: effect of the ZrO2 fraction on the wear of ceramic on ceramic joints. Biomaterials 20, 1925–1929 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.