561
Views
19
CrossRef citations to date
0
Altmetric
Review

Instrumented knee joint implants: innovations and promising concepts

, &

References

  • Felson DT, Zhang Y, Hannan MT, et al. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum 1997;40:728-33
  • Carr A, Robertsson O, Graves S, et al. Knee replacement. The Lancet 2012;379:1331-40
  • Messier SP. Osteoarthritis of the knee and associated factors of age and obesity: effects on gait. Med Sci Sports Exerc 1994;26:1446-52
  • Paxton EW, Namba RS, Maletis GB, et al. A prospective study of 80,000 total joint and 5000 anterior cruciate ligament reconstruction procedures in a community-based registry in the United States. J Bone Joint Surg 2010;92(2):117-32
  • Porter M, Borroff M, Gregg P, et al. 10th annual report 2013. National Joint Registry for England, Wales and Northern Ireland (2013)
  • Bergen H Report June 2010. The Norwegian Arthroplasty Register (2010)
  • Crowder A, Duffy G, Trousdale R. Long-term Results of Total Knee Arthroplasty in Young Patients With Rheumatoid Arthritis. J Arthroplasty 2005;20(3):12-16
  • Ito J, Koshino T, Okamoto R, Saito T. 15-year follow-up study of total knee arthroplasty in patients with rheumatoid arthritis. J Arthroplasty 2003;18(8):984-92
  • Duffy G, Crowder A, Trousdale R, Berry D. Cemented Total Knee Arthroplasty Using a Modern Prosthesis in Young Patients With Osteoarthritis. J Arthroplasty 2007;22(6-1):67-70
  • Labek G, Thaler M, Janda W, et al. Revision rates after total joint replacement - cumulative results from worldwide joint register datasets. J Bone Joint Surg 2011;93:B(3)):293-7
  • Ong KL, Lau E, Suggs J, et al. Risk of subsequent revision after primary and revision total joint arthroplasty. Clin Orthop Relat R 2010;468(11):3070-6
  • Vail T, Lang J. Surgical techniques and instrumentation in total knee arthroplasty. Surgery of The Knee 2006;1493-8
  • Scuderi G, Tria A. Knee Arthroplasty Handbook: Techniques in Total Knee and Revision Arthroplasty. Springer; 2006
  • Rydell NW Forces acting in the femoral head-prosthesis. A study on strain gauge supplied prostheses in living persons. Acta Orthop Scand 1966;37(Suppl 88):1-132
  • English TA, Kilvington M. In vivo records of hip loads using a femoral implant with telemetric output (a preliminary report). J Biomed Eng 1979;1(2):111-15
  • Soares dos Santos M, Ferreira JAF, Ramos A, et al. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Rev Med Devices 2014;11(6):617-35
  • Taylor SJ. A telemetry system for measurement of forces in massive orthopaedic implants in vivo. Conf. Proc. 18th IEEE Eng. Med Biol Soc 1996;1:290-2
  • Taylor SJ, Perry JS, Meswania JM, et al. Telemetry of forces from proximal femoral replacements and relevance to fixation. J Biomech 1997;30(3):225-34
  • Morris BA, D’Lima DD, Slamin JE, et al. e-Knee: evolution of the electronic knee prosthesis: telemetry technology development. J Bone Joint Surg Am 2001;83-A(2):62-6
  • D’Lima DD, Townsend CP, Arms CW, et al. An implantable telemetry device to measure intraarticular tibial forces. J Biomech 2005;38:299-304
  • Townsend CP, Arms SW, Hamel MJ. Remotely powered, multichannel, microprocessor based telemetry. systems for smart implantable devices and smart structures. Biannual Meeting of the International Society on Biotelemetry, Juneau AK, USA; 9 – 15 May 1999
  • Zhao D, Banks SA, D’Lima DD, et al. In vivo medial and lateral tibial loads during dynamic and high flexion activities. J Orthop Res 2007;25(5):593-602
  • D’Lima DD, Patil S, Steklov N, et al. Paul Award: tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty 2006;21:255-62
  • Mündermann A, Dyrby CO, D’Lima DD, et al. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res 2008;26(9):1167-72
  • Erhart JC, Dyrby CO, D’Lima D, et al. Changes in in-vivo knee loading with a variable-stiffness intervention shoe correlate with changes in the knee adduction moment. J Orthop Res 2010;28:1548-53
  • Kinney AL, Besier TF, Silder A, et al. Changes in in vivo knee contact forces through gait modification. J Orthop Res 2013;31(3):434-40
  • Kirking B, Krevolin J, Townsend C, et al. A multiaxial force-sensing implantable tibial prosthesis. J Biomech 2006;39:1744-51
  • D’Lima D, Patila S, Steklov N, et al. In vivo knee moments and shear after total knee arthroplasty. J Biomech 2007;40(1):11-17
  • D’Lima DD, Steklov N, Patil S, et al. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res 2008;466:2605-11
  • Varadarajan K, Moynihan A, D’Lima DD, et al. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities. J Biomech 2008;41(10):2159-68
  • Gerus P, Sartori M, D’Lima DD, et al. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 2013;46:2778-86
  • Fregly BJ, D’Lima DD, Colwell CWJr. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res 2009;27(8):1016-21
  • Heinlein B, Graichen F, Bender A, et al. Design, calibration and pre-clinical testing of an instrumented tibial tray. J Biomech 2007;40(1):4-10
  • Heinlein B, Kutzner I, Graichen F, et al. ESB Clinical Biomechanics Award. 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months. Clinical Biomechanics 2009;24:315-26
  • Kutzner I, Heinlein B, Graichen F, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 2010;43:2164-73
  • Kutzner I, Küther S, Heinlein et al. The effect of valgus braces on medial compartment load of the knee joint – in vivo load measurements in three subjects. J Biomech 2011;44:1354-60
  • Kutzner I, Damm P, Heinlein B, et al. The effect of laterally wedged shoes on the loading of the medial knee compartment-in vivo measurements with instrumented knee implants. J Orthop Res 2011;29:1910-15
  • Halder A, Kutzner I, Graichen F, et al. Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement – In Vivo Measurements in Five Patients. J Bone Joint Surg Am 2012;94(11):1023-9
  • Kutzner I, Stephan D, Dymke J, et al. The influence of footwear on knee joint loading during walking – in vivo load measurements with instrumented knee implants. J Biomech 2013;46:796-800
  • Kutzner I, Heinlein B, Graichen F, et al. Loading of the knee joint during ergometer cycling: telemetric in vivo data. J Orthop Sports Phys Ther 2012;42(12):1032-8
  • Kutzner I, Trepczynski A, Heller MO, et al. Facts about Their Correlation during Gait. PLoS One 2013;8(12):e8103
  • Bergmann G, Bender A, Graichen F, et al. Standardized Loads Acting in Knee Implants. PLoS One 2014;9(1):e86035
  • Trepczynski A, Kutzner I, Bergmann G, et al. Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities. Arthritis Rheumatol 2014;66(5):1218-27
  • Kaufman KR, Kovacevic N, Irby SE, Colwell CWJr. Instrumented implant for measuring tibiofemoral forces. J Biomech 1996;29:667-71
  • Graichen F, Arnold R, Rohlmann A, Bergmann G. Implantable 9-channel telemetry system for in vivo load measurements with orthopaedic implants. IEEE T. Bio-med Eng 2007;54(2):253-61
  • Bergmann G. Charit Universitaetsmedizin Berlin ”OrthoLoad”. Available from: www.orthoload.com [Last accessed March 2015]
  • IEEE-SA Standard Board, C95.1-2005 - IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. Institute of Electrical and Electronics Engineers (2005)
  • Bergmann G, Siraky J, Kölbel R, Rohlmann A. Measurement of joint forces with implants - a new method of instrumentation and its application in sheep. Conf. Proc. Biomechanics Symposium. ASCE Mechanics Conf 1981. 43:225-8
  • Fregly BJ, Besier TF, Lloyd DG, et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res 2012;30(4):503-13
  • Kolisek FR, McGrath MS, Marker DR, et al. Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. Iowa Orthop J 2009;29:23-7
  • Lewandowski PJ, Askew MJ, Lin DF, et al. Kinematics of posterior cruciate ligament-retaining and-sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses. J Arthroplasty 1997;12:777-84
  • Almouahed S, Gouriou M, Hamitouche C, et al. Design and Evaluation of Instrumented Smart Knee Implant. IEEE Transactions on Biomedical Engineering 2011;58(4):971-82
  • Almouahed S, Gouriou M, Hamitouche C, et al. The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking. IEEE/ASME Trans Mechatron 2011;16(5):799-807
  • Lahuec C, Almouahed S, Arzel M, et al. A self-powered telemetry system to estimate the postoperative instability of a knee implant. IEEE Transactions on Biomedical Engineering 2011;58(3):822-5
  • Lahuec C, Arzel M. An analog core computing the center of pressure in a knee replacement prosthesis. IEEE 9th International Conference: New Circuits and Systems, Bordeaux France; 26 – 19 June 2011
  • Luciano V, Sardini E, Serpelloni M, Baronio G. An energy harvesting converter to power sensorized total human knee prosthesis. Meas Sci Technol 2014;25(2):1-10
  • Crescini D, Sardini E, Serpelloni M. Design and test of an autonomous sensor for force measurements in human knee implants. Sensors and Actuators A Physical 2011;166(1):1-8
  • Arami A, Miehlbradt J, Aminian K. Accurate internal–external rotation measurement in total knee prostheses: A magnetic solution. J Biomech 2012;45:2023-7
  • Arami A, Simoncini M, Atasoy O, et al. Instrumented knee prosthesis for force and kinematics measurements, IEEE trans. Autom Sci Eng 2013;10:615-24
  • Forchelet D, Simoncini M, Arami A, et al. Enclosed electronic system for force measurements in knee implants. Sensors 2014;14(8):15009-21
  • Crottet D, Maeder T, Fritschy D, et al. Development of a force amplitude- and location-sensing device designed to improve the ligament balancing procedure in TKA. IEEE Trans Biomed Eng 2005;52:1609-11
  • Crottet D, Kowal J, Sarfert S. A, et al. Ligament balancing in TKA: evaluation of a force-sensing device and the influence of patellar eversion and ligament release. J Biomech 2007;40(8):1709-15
  • Collo A, Poignet P, Hamitouche C, et al. A miniaturised actuation system embedded in an instrumented knee implant for postoperative ligament imbalance correction. Conf Proc IEEE Eng Med Biol Soc 2014;2014:6211-14
  • Collo A, Poignet P, Hamitouche C, et al. An Active Tibial Component for Postoperative Fine-Tuning Adjustment of Knee Ligament Imbalance. 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, São Paulo Brazil; 12 – 15 Aug 2014
  • Tackson SJ, Krebs DE, Harris BA. Acetabular pressures during hip arthritis exercises. Arthrit Care Res 1997;10(5):308-19
  • McGibbon CA, Krebs DE, Mann RW. In vivo hip pressures during cane and load-carrying gait. Arthrit Care Res 1997;10(5):300-7
  • McGibbon CA, Krebs DE, Trahan CA, et al. Cartilage degeneration in relation to repetitive pressure - case study of a unilateral hip hemiarthroplasty patient. J Arthroplasty 1999;14(1):52-8
  • Kotzar GM, Davy DT, Goldberg VM, et al. Telemeterized in vivo hip joint force data: A report on two patients after total hip surgery. J Orthop Res 1991;9(5):621-33
  • Kotzar GM, Davy DT, Berilla J, Goldberg VM. Torsional loads in the early postoperative period following total hip replacement. J Orthop Res 1995;13(6):945-55
  • Graichen F, Bergmann G, Rohlmann A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J Biomech 1999;32(10):1113-17
  • Bergmann G, Graichen F, Rohlmann A, et al. Frictional heating of total hip implants. Part 1- measurements in patients. J Biomech 2001;34(4):431-28
  • Bergmann G, Graichen F, Dymke J, et al. High-tech hip implant for wireless temperature measurements in vivo. PLoS One 2012;7(8):e43489
  • Ruther C, Gabler C, Ewald H, et al. In vivo monitoring of implant osseointegration in a rabbit model using acoustic sound analysis. J Orthop Res 2014;32(4):606-12
  • Hao S, Taylor JT, Bowen CR, et al. Sensing methodology for in vivo stability evaluation of total hip and knee arthroplasty. Sensor Actuat A-Phys 2010;157(1):150-60
  • Alpuim P, Filonovich SA, Costa CM, et al. Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. J Non-Cryst. Solids 2008;354(19-25):2585-9
  • Platt SR, Farritor S, Haider H. On low-frequency electric power generation with PZT ceramics. IEEE-ASME T. Mech 2005;10(2):240-52
  • Morais R, Silva N, Santos P, et al. Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis. Procedia Engineering 2010;5:766-9
  • Morais R, Silva NM, Santos PM, et al. Double permanent magnet vibration power generator for smart hip prosthesis. Sensor. Actuat. A-Phys 2011;172(1):259-68
  • Silva N, Santos P, Ferreira J, et al. Multi-purpose and multi-source energy management system for biomedical implants. Procedia Engineering 2012;47:722-5
  • Morgado ML, Morgado LF, Henriques E, et al. Nonlinear modeling of vibrational energy harvesters for smart prostheses. Procedia Engineering 2012;47:1089-92
  • Soares dos Santos M, Ferreira JA, Ramos A, et al. Multi-source energy harvesting power generators for instrumented implants - towards the development of a smart hip prosthesis. Conf Proc 5th BIODEVICES 2012;71-81
  • Soares dos Santos M, Ferreira JA, Ramos A, et al. Multi-source harvesting systems for electric energy generation on smart hip prostheses. Biomedical. Gabriel J, Schier J, Van Huffel S, et al., editors. Engineering Systems and Technologies 357. Springer-Verlag; Berlin Heidelberg: 2013. p. 80-96
  • Soares dos Santos M, Ferreira JA, Ramos A, et al. Instrumented hip implants: Electric supply systems. J Biomech 2013;46(15):2561-71
  • Silva NM, Santos PM, Ferreira JA. Power management architecture for smart hip prostheses comprising multiple energy harvesting systems. Sensor. Actuat. A-Phys 2013;202:183-92
  • Soares dos Santos M, Ferreira JA, Ramos A, et al. Active orthopaedic implants: Towards optimality. J Franklin Inst 2015;352(3):813-34
  • Stea S, Visentin M, Donati ME, et al. Nitric oxide synthase in tissues around failed hip prostheses. Biomaterials 2002;23(24):4833-8
  • Yang F, Wu W, Cao L, et al. Pathways of macrophage apoptosis within the interface membrane in aseptic loosening of prostheses. Biomaterials 2011;32(35):9159-67
  • Ponmozhi J, Frias C, Marques T, Frazão O. Smart sensors/actuators for biomedical applications: Review. Measurement 2012;45(7):1675-88
  • Prescott JH, Lipka S, Baldwin S, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006;24(4):437-8
  • Harrysson O, Cormier D. Direct fabrication of custom orthopedic implants using electron beam melting technology. Advanced Manufacturing Technology for Medical Applications 2006;193-208
  • Hronik-Tupaj M, Kaplan DL. A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng Pt B-Rer 2012;18(3):167-80
  • Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: A novel tool for tissue engineering. Tissue Eng Pt B-Rer 2013;19(1):48-57

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.