811
Views
81
CrossRef citations to date
0
Altmetric
Review

Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years

, , , &

References

  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4:743-65
  • Fratzl P, Gupta H, Burgert I. Mechanical functionality by hierarchical structuring — Lessons from biological materials. Comp Biochem Physiol A Mol Integr Physiol 2007;146:S132
  • Fix D, Puchegger S, Pilz-Allen C, et al. Functional mapping of bone on the micrometer-scale by scanning acoustic microscopy. Bone 2012;50:S125-6
  • Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008;42:456-66
  • Arcos D, Boccaccini AR, Bohner M, et al. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 2014.10(5):1793-805. Available from: http://dx.doi.org/10.1016/j.actbio.2014.01.004
  • Jakob F, Ebert R, Ignatius A, et al. Bone tissue engineering in osteoporosis. Maturitas 2013;75:118-24
  • Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3:589-601
  • Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 2011;7:16-30
  • Hutmacher DW, Schantz JT, Xu C, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007;1:245-60
  • Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater 2011;7:2355-73
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413-31
  • Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward strong and tough glass and ceramic scaffolds for bone repair. Adv Funct Mater 2013;23:5461-76
  • Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 2006;27:2414-25
  • Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 2011;97:514-35
  • Wu SC, Hsu HC, Hsiao SH, Ho WF. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive. J Mater Sci Mater Med 2009;20:1229-36
  • Comesaña R, Lusquiños F, Del Val J, et al. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2. laser cladding. Acta Biomater 2011;7:3476-87
  • Fu Q, Saiz Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl 2011;31:1245-56
  • Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 2009;6(Suppl 3):S341-8
  • Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008;23:197-212
  • Roether JA, Boccaccini AR, Hench LL, et al. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 2002;23:3871-8
  • Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2005;2:303-17
  • Guarino V, Gloria A, Raucci MG, et al. Bio-inspired composite and cell instructive platforms for bone regeneration. Int Mater Rev 2012;57:256-75
  • Sharifi S, Shafieyan Y, Mirzadeh H, et al. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate. J Biomed Mater Res A 2011;98:257-67
  • Joughehdousta S, Behnamghaderb A, Imanic M, et al. A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite-poly(ϵ-caprolactone fumarate) composite layer. Ceram Int 2013;39:209-18
  • Bang LT, Kawachi G, Nakagawa M, et al. The use of poly (ϵ-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J Appl Polym Sci 2013;130:426-33
  • Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 2008;43:4433-42
  • Nakahira A, Tamai M, Miki S, Pezzotti G. Fracture behavior and biocompatibility evaluation of nylon-infiltrated porous hydroxyapatite. J Mater Sci 2002;37:4425-30
  • Valliant EM, Jones JR. Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter 2011;7:5083
  • Pereira MM, Jones JR, Orefice RL, Hench LL. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. J Mater Sci Mater Med 2005;16:1045-50
  • Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9:4457-86
  • Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 2011;7:3547-54
  • Huang TS, Rahaman MN, Doiphode ND, et al. Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Mater Sci Eng C 2011;31:1482-9
  • Bretcanu O, Chen Q, Misra SK, et al. Biodegradable polymer coated 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Glass Technol Eur J Glass Sci Technol A 2007;48:227-34
  • Dorozhkin S, Ajaal T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc Inst Mech Eng H 2009;223:459-70
  • Peroglio M, Gremillard L, Gauthier C, et al. Mechanical properties and cytocompatibility of poly(ϵ-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Acta Biomater 2010;6:4369-79
  • Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R. Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. J Porous Mater 2012;19:667-75
  • Zhao J, Duan K, Zhang JW, et al. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Appl Surf Sci 2010;256:4586-90
  • Kang Y, Scully A, Young DA, et al. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur Polym J 2011;47:1569-77
  • Wu C, Fan W, Gelinsky M, et al. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater 2011;7:1797-806
  • Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, et al. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 2011;7:1307-18
  • Henriksen SS, Ding M, Juhl MV, et al. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci Mater Med 2011;22:1111-18
  • Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010;7:209-27
  • Komlev VS, Barinov SM. Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation. J Mater Sci Lett 2003;22:1215-17
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ϵ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004;25:1279-87
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med 2005;16:189-95
  • Peroglio M, Gremillard L, Chevalier J, et al. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc 2007;27:2679-85
  • Chen QZ, Boccaccini AR. Poly (D, L -lactic acid) coated 45S5 Bioglass ® -based scaffolds: processing and characterization. J Biomed Mater Res A 2006;77:445-57
  • Wu C, Ramaswamy Y, Boughton P, Zreiqat H. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomater 2008;4:343-53
  • Mantsos T, Chatzistavrou X, Roether JA, et al. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings. Biomed Mater 2009;4:055002
  • Shamsudin S, Suhaida MG, Sahid S, et al. Fabrication and characterization of 45S5 Bioglass® composite scaffolds. Adv Mater Res 2014;925:442-9
  • Miao X, Tan LP, Tan LS, Huang X. Porous calcium phosphate ceramics modified with PLGA-bioactive glass. Mater Sci Eng C 2007;27:274-9
  • Miao X, Tan DM, Li J, et al. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008;4:638-45
  • Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J Biomater Appl 2007;21:351-74
  • Zhao L, Lin K, Zhang M, et al. The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics. J Mater Sci 2011;46:4986-93
  • Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005;59:4000-5
  • Miao X, Lim G, Loh K, Boccaccini AR. Preparation and characterization of calcium phosphate bone cements. Mater Proc Prop Perf (MP3) 2005;3:319-26
  • Dorati R, Colonna C, Genta I, et al. Preparation and characterization of an advanced medical device for bone regeneration. AAPS PharmSciTech 2013;15:75-82
  • Desimone D, Li W, Roether JA, et al. Biosilicate ® -gelatine bone scaffolds by the foam replica technique: development and characterization. Sci Technol Adv Mater 2013;14:045008
  • Li JJ, Gil ES, Hayden RS, et al. Multiple silk coatings on biphasic calcium phosphate scaffolds: effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells. Biomacromolecules 2013;14:2179-88
  • Nooeaid P, Roether JA, Weber E, et al. Technologies for multilayered scaffolds suitable for interface tissue engineering. Adv Eng Mater 2014;16(3):319-27
  • Hum J, Luczynski KW, Nooeaid P, et al. Stiffness Improvement of 45S5 Bioglass® -Based Scaffolds Through Natural and Synthetic Biopolymer Coatings: an Ultrasonic Study. Strain 2013;49:431-9
  • Pezzotti G, Asmus SMF, Ferroni LP, Miki S. In situ polymerization into porous ceramics: a novel route to tough biomimetic materials. J Mater Sci Mater Med 2002;13:783-7
  • Hasselman DPH, Gebauer J, Manson JA. Elastic Behavior of Polymer-Impregnated Porous Ceramics. J Am Ceram Soc 1972;55:588-91
  • Nielsen LF. Elasticity and Damping of Porous Materials and Impregnated Materials. J Am Ceram Soc 1983;67:93-8
  • Manning DG, Hope BB. The effect of porosity on the compressive strength and elastic modulus of polymer impregnated concrete. Cement Concrete Res 1971;I:631-44
  • Gebauer J, Hasselman DPH. Effect of polymer impregnation on physical and mechanical behavior of ceramic tile bodies. Am Ceram Soc Bull 1972;51:471-3
  • Verganelakis V, Nicolaou PD, Trapalis C, Kordas G. Evaluation of the critical processing parameters of ormosil coatings on the increase of the strength of glass. J Non-Cryst Solids 2000;265:265-75
  • Wang FH, Hand RJ, Ellis B, Seddon AB. Glass strengthening using epoxy coatings. Phys Chem Glasses 1995;36:201-5
  • Wang FH, Chen XM, Ellis B, et al. Strengthening of glass rods and bottles with water based epoxy acrylate coatings. Mater Sci Technol 1997;13:163-71
  • Nalla R. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials 2003;24:3955-68
  • Zahn D. A molecular rationale of shock absorption and self-healing in a biomimetic apatite-collagen composite under mechanical load. Angew Chem Int Ed Engl 2010;49:9405-7
  • Boccaccio A, Ballini A, Pappalettere C, et al. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 2011;7:112-32
  • Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater 2006;5:52-5
  • Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2003;2:164-8
  • Torres F, Nazhat S, Sheikhmdfadzullah S, Maquet V. Boccaccini, a Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos Sci Technol 2007;67:1139-47
  • Fiedler T, Belova IV, Murch GE. Roether J. a.; Boccaccini, a. R. Tailoring elastic properties of PLGA/TiO2 biomaterials. Comput Mater Sci 2012;61:283-6
  • Novak S, Druce J, Chen Q.-Z, Boccaccini AR. TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds. J Mater Sci 2009;44:1442-8
  • Zhou H, Lawrence JG, Bhaduri SB. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater 2012;8:1999-2016
  • Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010;31:5498-509
  • Martínez-Vázquez FJ, Perera FH, Miranda P, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 2010;6:4361-8
  • Martínez-Vázquez FJ, Miranda P, Guiberteau F, Pajares A. Reinforcing bioceramic scaffolds with in situ synthesized ϵ-polycaprolactone coatings. J Biomed Mater Res A 2013;101:3551-9
  • Yos P, Todo M. Improvement of compressive properties of porous HA scaffold by introducing PCL secondary phase. Adv Mater Res 2014;858:96-102
  • Kim BS, Yang SS, Lee J. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2013;101B:1302-9
  • Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C Mater Biol Appl 2014;34:437-45
  • Roohani-Esfahani SI, Lu ZF, Li JJ, et al. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomater 2012;8:302-12
  • Bang LT, Tsuru K, Munar M, Ishikawa KOR. Mechanical behavior and cell response of PCL coated -TCP foam for cancellous-type bone replacement. Ceram Int 2013;39:5631-7
  • Bretcanu O, Misra S, Roy I, et al. In vitro biocompatibility of 45S5 Bioglass-derived glass - ceramic scaffolds coated with poly (3-hydroxybutyrate). J Tissue Eng Regen Med 2009;3:139-48
  • Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R. Mechanical evaluation of nHAp scaffold coated with poly-3-hydroxybutyrate for bone tissue engineering. J Nanosci Nanotechnol 2013;13:1555-62
  • Sadiasa A, Kim MS, Lee BT. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. J Drug Target 2013;21:719-29
  • Liu D, Zhuang J, Shuai C, Peng S. Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Biofabrication 2013;5:025005; 10pp
  • Lee J, Kim IK, Kim TG, et al. Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(l-lactic acid) coating. J Porous Mater 2013;20:719-25
  • Nie L, Chen D, Yang Q, et al. Hydroxyapatite/poly-l-lactide nanocomposites coating improves the adherence and proliferation of human bone mesenchymal stem cells on porous biphasic calcium phosphate scaffolds. Mater Lett 2013;92:25-8
  • Brauer DS, Rüssel C, Vogt S, et al. Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks. J Biomed Mater Res A 2007;80:410-20
  • Franco Steier V, Koplin C, Kailer A. Influence of pressure-assisted polymerization on the microstructure and strength of polymer-infiltrated ceramics. J Mater Sci 2013;48:3239-47
  • Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res 2001;61:1-8
  • Gil-Albarova J, Vila M, Badiola-Vargas J, et al. In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomater 2012;8:3777-83
  • Torres AL, Gaspar VM, Serra IR, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 2013;33:4460-9
  • Salinas AJ, Vallet-Regí M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 2013;3:11116
  • Puértolas JA, Vadillo JL, Sánchez-Salcedo S, et al. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration. Acta Biomater 2011;7:841-7
  • Sánchez-Salcedo S, Vila M, Izquierdo-Barba I, et al. Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication. J Mater Chem 2010;20:6956
  • Roman J, Cabanas MV, Pena J, et al. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res A 2008;84A:99-107
  • Cabañas MV, Peña J, Román J, Vallet-Regí M. Tailoring vancomycin release from beta-TCP/agarose scaffolds. Eur J Pharm Sci 2009;37:249-56
  • Cicuéndez M, Izquierdo-Barba I, Sánchez-Salcedo S, et al. Biological performance of hydroxyapatite-biopolymer foams: in vitro cell response. Acta Biomater 2012;8:802-10
  • Alcaide M, Serrano MC, Roman J, et al. Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds. J Biomed Mater Res A 2010;95A:793-800
  • Califano V, Bloisi F, Vicari LRM, et al. Matrix assisted pulsed laser evaporation (MAPLE) of Poly(D,L lactide) (PDLLA) on three dimensional Bioglass® structures. Adv Eng Mater 2009;11:685-9
  • Bretcanu O, Boccaccini AR, Salih V. Poly-dl-lactic acid coated Bioglass® scaffolds: toughening effects and osteosarcoma cell proliferation. J Mater Sci 2012;47:5661-72
  • Řehořek L, Chlup Z, Meng D, et al. Response of 45S5 Bioglass® Foams to Tensile Loading. Ceram Int 2013;39:8015-20
  • Chen QZ, Quinn JMW, Thouas GA, et al. Bone-Like Elastomer-Toughened Scaffolds with Degradability Kinetics Matching Healing Rates of Injured Bone. Adv Eng Mater 2010;12:B642-8
  • Rai R, Tallawi M, Grigore A, Boccaccini AR. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 2012;37:1051-78
  • Roohani-Esfahani SI, Lu Z, Zreiqat H. Novel, simple and reproducible method for preparation of composite hierarchal porous structure scaffolds. Mater Lett 2011;65:2578-81
  • Roohani-Esfahani SI, Dunstan CR, Davies B, et al. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater 2012;8:4162-72
  • Zhao L, Wu C, Lin K, Chang J. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds. Biomed Mater Eng 2012;22:289-300
  • Bretcanu O, Misra SK, Yunos DM, et al. Kowalewski T. a. Electrospun nanofibrous biodegradable polyester coatings on Bioglass®-based glass-ceramics for tissue engineering. Mater Chem Phys 2009;118:420-6
  • Yang G, Yang X, Zhang L, et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state. Mater Lett 2012;75:80-3
  • Bellucci D, Sola A, Gentile P, et al. Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue. J Biomed Mater Res A 2012;100:3259-66
  • Metze AL, Grimm A, Nooeaid P, et al. Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering. Key Eng Mater 2013;541:31-9
  • Manzano M, Salinas AJ, Gil FJ, Vallet-Regí M. Mechanical properties of organically modified silicates for bone regeneration. J Mater Sci Mater Med 2009;20:1795-801
  • Yao Q, Nooeaid P, Roether JA, et al. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram Int 2013;39(7):7517-22. Avaialble from http://dx.doi.org/10.1016/j.ceramint.2013.03.002
  • Bertolla L, Dlouhý I, Philippart A, Boccaccini AR. Mechanical reinforcement of Bioglass®-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating. Mater Lett 2014;118:204-7
  • Fabbri P, Valentini L, Hum J, et al. 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. Mater Sci Eng C 2013;33:3592-600
  • Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech 2007;40:750-65
  • Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 2012;16:2247-70
  • Liverani L, Roether JA, Nooeaid P, et al. Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng A 2012;557:54-8
  • Yunos DM, Ahmad Z, Boccaccini AR. Fabrication and characterization of electrospun poly-DL-lactide (PDLLA) fibrous coatings on 45S5 Bioglass® substrates for bone tissue engineering applications. J Chem Technol Biotechnol 2009;85:768-74
  • Yunos DM, Ahmad Z, Salih V, Boccaccini AR. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass(R)-derived foams. J Biomater Appl 2011;27:537-51
  • Hoppe A, Güldal NS, Boccaccini AR, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32(11):2757-74
  • Li W, Nooeaid P, Roether JA, et al. Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass®-based glass-ceramic scaffolds for bone tissue engineering. J Eur Ceram Soc 2013; Avaialble from http://dx.doi.org/10.1016/j.jeurceramsoc.2013.08.0
  • Olalde B, Garmendia N, Sáez-Martínez V, et al. Multifunctional bioactive glass scaffolds coated with layers of poly(D,L-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. Mater Sci Eng C Mater Biol Appl 2013;33:3760-7
  • Francis L, Meng D, Knowles JC, et al. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomater 2010;6:2773-86
  • Meng D, Francis L, Thompson ID, et al. 3HB) microsphere-coated 45S5 Bioglass(®)-based scaffolds for bone tissue engineering. J Mater Sci Mater Med 2013;24(12):2809-17
  • Yoshida K, Bessho K, Fujimura K, et al. Enhancement by Recombinant Human Bone Morphogenetic Protein-2 of Bone Formation by Means of Porous Hydroxyapatite in Mandibular Bone Defects. J Dent Res 1999;78:1505-10
  • Abarrategi A, Moreno-Vicente C, Ramos V, et al. Improvement of porous β-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Tissue Eng Part A 2008;14:1305-19
  • Shiels S, Oh S, Bae C, et al. Evaluation of BMP-2 tethered polyelectrolyte coatings on hydroxyapatite scaffolds in vivo. J Biomed Mater Res B Appl Biomater 2012;100B:1782-91
  • Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A 2010;95:1-8
  • Wang C, Lin K, Chang J, Sun J. Osteogenesis and angiogenesis induced by porous β-CaSiO3./PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials 2013;34:64-77
  • Kadow-Romacker A, Greiner S, Schmidmaier G, Wildemann B. Effect of β-tricalcium phosphate coated with zoledronic acid on human osteoblasts and human osteoclasts in vitro. J Biomater Appl 2011;27:577-85
  • Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury 2008;39:S37-43
  • Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 2001;28:341-50
  • Wu C, Fan W, Chang J, Xiao Y. Mussel-inspired porous SiO2 scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering. J Mater Chem 2011;21:18300
  • Trajkovski B, Petersen A, Strube P, et al. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv Drug Deliv Rev 2012;64:1142-51
  • Liu B, Lin P, Shen Y, Dong Y. Porous bioceramics reinforced by coating gelatin. J Mater Sci Mater Med 2008;19:1203-07
  • Tian T, Jiang D, Zhang J, Lin Q. Fabrication of Bioactive Composite by developing PLLA onto the Framework of Sintered HA Scaffold. Mater Sci Eng C 2008;28:51-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.