473
Views
11
CrossRef citations to date
0
Altmetric
Review

Devices for stem cell isolation and delivery: current need for drug discovery and cell therapy

, &

References

  • Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990;11(2):231-8
  • Watts MJ, Somervaille TC, Ings SJ, et al. Variable product purity and functional capacity after CD34 selection: a direct comparison of the CliniMACS (v2.1) and Isolex 300i (v2.5) clinical scale devices. Br J Haematol 2002;118(1):117-23
  • Cizkova D, Cizek M, Nagyova M, et al. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Methods 2009;184(1):88-94
  • Kahan B, Magliocca J, Merriam F, et al. Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdx1+ foregut endoderm stem cell lineage. Stem Cell Res 2011;6(2):143-57
  • Donndorf P, Kaminski A, Tiedemann G, et al. Validating intramyocardial bone marrow stem cell therapy in combination with coronary artery bypass grafting, the PERFECT Phase III randomized multicenter trial: study protocol for a randomized controlled trial. Trials 2012;13:99
  • Downes A, Mouras R, Bagnaninchi P, Elfick A. Raman spectroscopy and CARS microscopy of stem cells and their derivatives. J Raman Spectrosc 2011;42(10):S. 1864-70
  • Noh MS, Jun B, Kim S, et al. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 2009;30(23-24):3915-25
  • Donnenberg AD, Donnenberg VS, Griffin DL, et al. Intra-operative preparation of autologous bone marrow-derived CD34-enriched cellular products for cardiac therapy. Cytotherapy 2011;13(4):441-8
  • Efficacy and Safety of Targeted Intramyocardial Delivery of Auto CD34+ Stem Cells for Improving Exercise Capacity in Subjects With Refractory Angina (RENEW). Available from: http://clinicaltrials.gov/show/NCT01508910
  • Povsic TJ, Junge C, Nada A, et al. A phase 3, randomized, double-blinded, active-controlled, unblinded standard of care study assessing the efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina: design of the RENEW study. Am Heart J 2013;165(6):854-861.e2
  • Calenic B, Ishkitiev N, Yaegaki K, et al. Magnetic separation and characterization of keratinocyte stem cells from human gingiva. J Periodont Res 2010;45(6):703-8
  • Fujino N, Kubo H, Suzuki T, et al. Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 2011;91(3):363-78
  • Schriebl K, Lim S, Choo A, et al. Stem cell separation: a bottleneck in stem cell therapy. Biotechnol J 2010;5(1):50-61
  • Hou HW, Warkiani ME, Khoo BL, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 2013;3:1259
  • Kang JH, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 2012;12(12):2175-81
  • Didar TF, Li K, Veres T, Tabrizian M. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device. Biomaterials 2013;34(22):5588-93
  • Myers FB, Zarins CK, Abilez OJ, Lee LP. Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters. Lab Chip 2013;13(2):220-8
  • Lin K, Matsubara Y, Masuda Y, et al. Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy 2008;10(4):417-26
  • Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 2013;132(6):932e-9e
  • Fraser JK, Hicok KC, Shanahan R, et al. The Celution® System: automated Processing of Adipose-Derived Regenerative Cells in a Functionally Closed System. Adv Wound Care (New Rochelle) 2014;3(1):38-45
  • Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005;26(12):1188-95
  • Duckers HJ, Houtgraaf J, Hehrlein C, et al. Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention 2011;6(7):805-12
  • Ince H, Petzsch M, Rehders TC, et al. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004;11(6):695-704
  • Mazo M, Hernández S, Gavira JJ, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction. Cell Transplant 2012;21(12):2723-33
  • Autologous Mesenchymal Stromal Cell Therapy in Heart Failure.). Available from: http://clinicaltrials.gov/show/NCT00644410
  • Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-Based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Coll Cardiol 2003;42(12):2063-9
  • Giannotti S, Trombi L, Bottai V, et al. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS One 2013;8(8):e73893
  • The Source for Interventional Cardiovascular News and Education, Conference News: ACC.14 and TCT@ACC-i2, Intramyocardial Injection of Stem Cells Shows Promise for Severe Ischemic Heart Failure. Available from: www.tctmd.com/show.aspx?id=123847
  • Mathiasen AB, Jørgensen E, Qayyum AA, et al. Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial). Am Heart J 2012;164(3):285-91
  • PercutaneOus StEm Cell Injection Delivery Effects On Neomyogenesis in Dilated CardioMyopathy (The POSEIDON-DCM Study) (PoseidonDCM). Available from: www.clinicaltrials.gov/show/NCT01392625
  • Rodrigo SF, van Ramshorst J, Hoogslag GE, et al. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res 2013;6(5):816-25
  • Trachtenberg B, Velazquez DL, Williams AR, et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J 2011;161(3):487-93
  • Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011;108(7):792-6
  • de la Fuente LM, Stertzer SH, Argentieri J, et al. Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am Heart J 2007;154(1):79. e1-7
  • Behfar A, Latere J, Bartunek J, et al. Optimized delivery system achieves enhanced endomyocardial stem cell retention. Circ Cardiovasc Interv 2013;6(6):710-18
  • Konstanty-Kalandyk J, Piątek J, Miszalski-Jamka T, et al. The combined use of transmyocardial laser revascularisation and intramyocardial injection of bone-marrow derived stem cells in patients with end-stage coronary artery disease: one year follow-up. Kardiol Pol 2013;71(5):485-92
  • Sürder D, Manka R, Lo Cicero V, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation 2013;127(19):1968-79
  • Moreira Rde C, Haddad AF, Silva SA, et al. Intracoronary Stem-cell Injection after Myocardial Infarction: microcirculation Sub-study. Arq Bras Cardiol 2011;97(5):420-6
  • Medicetty S, Wiktor D, Lehman N, et al. Percutaneous adventitial delivery of allogeneic bone marrow-derived stem cells via infarct-related artery improves long-term ventricular function in acute myocardial infarction. Cell Transplant 2012;21(6):1109-20
  • Dose Escalation and Safety Study of Human Spinal Cord Derived Neural Stem Cell Transplantation for the Treatment of Amyotrophic Lateral Sclerosis. Available from: http://clinicaltrials.gov/show/NCT01730716
  • Silvestrini MT, Yin D, Coppes VG, et al. Radially branched deployment for more efficient cell transplantation at the scale of the human brain. Stereotact Funct Neurosurg 2013;91(2):92-103
  • Riley J, Glass J, Feldman EL, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 2014;74(1):77-87
  • Glass JD, Boulis NM, Johe K, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012;30(6):1144-51
  • Riley JP, Raore B, Taub JS, et al. Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery 2011;69(2 Suppl Operative): ons147-54; discussion ons155
  • Guo L, Ge J, Wang S, et al. A novel method for efficient delivery of stem cells to the ischemic brain. Stem Cell Res Ther 2013;4(5):116
  • Kirk K, Hao E, Lahmy R, Itkin-Ansari P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res 2014;12(3):807-14
  • Schon LC, Gill N, Thorpe M, et al. Efficacy of a mesenchymal stem cell loaded surgical mesh for tendon repair in rats. J Transl Med 2014;12:110
  • Manning CN, Schwartz AG, Liu W, et al. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta Biomater 2013;9(6):6905-14
  • Hsu S, Kuo W, Chen Y, et al. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 2013;9(5):6606-15
  • Wei Y, Gong K, Zheng Z, et al. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 2011;22(8):1947-64
  • Microfracture Versus Adipose Derived Stem Cells for the Treatment of Articular Cartilage Defects. Available from: clinicaltrials.gov/ct2/show/NCT02090140
  • Mesenchymal Stem Cells in a Clinical Trial to Heal Articular Cartilage Defects. Available from: http://clinicaltrials.gov/show/NCT00885729
  • Laryngo-Tracheal Tissue-Engineered Clinical Transplantation. Available from: http://clinicaltrials.gov/show/NCT01997437
  • Evaluation the Treatment of Nonunion of Long Bone Fracture of Lower Extremities (Femur and Tibia) Using Mononuclear Stem Cells From the Iliac Wing Within a 3-D Tissue Engineered Scaffold. Available from: http://clinicaltrials.gov/show/NCT01958502
  • Treatment of Infertility by Collagen Scaffold Loaded With Autologous Bone Marrow Stem Cells. Available from: http://clinicaltrials.gov/show/NCT02204358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.