271
Views
112
CrossRef citations to date
0
Altmetric
Review

Cellular magnetic resonance imaging: current status and future prospects

, &
Pages 427-439 | Published online: 09 Jan 2014

References

  • Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol. Ther.4(5), 518–523 (2005).
  • Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation101(18), E182–E187 (2000).
  • Brazelton TR, Blau HM. Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells23(9), 1251–1265 (2005).
  • Blits B, Kitay BM, Farahvar A et al. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Restor. Neurol. Neurosci.23(5–6), 313–324 (2005).
  • Tanaka M, Swijnenburg RJ, Gunawan F et al.In vivo visualization of cardiac allograft rejection and trafficking passenger leukocytes using bioluminescence imaging. Circulation112(9 Suppl.), I105–I110 (2005).
  • Paulmurugan R, Gambhir SS. Firefly luciferase enzyme fragment complementation for imaging in cells and living animals. Anal. Chem.77(5), 1295–1302 (2005).
  • Dingli D, Kemp BJ, O’Connor MK et al. Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol. Imaging Biol.8(1), 16–23 (2006).
  • Kim YH, Lee DS, Kang JH et al. Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J. Nucl. Med.46(2), 305–311 (2005).
  • Chung JK. Sodium iodide symporter: its role in nuclear medicine. J. Nucl. Med.43(9), 1188–1200 (2002).
  • Yaghoubi SS, Barrio JR, Namavari M et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther.12(3), 329–339 (2005).
  • Buursma AR, Rutgers V, Hospers GA et al. 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in vitro comparison with other PET tracers. Nucl. Med. Commun.27(1), 25–30 (2006).
  • Hustinx R, Shiue CY, Alavi A et al. Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and. Eur. J. Nucl. Med.28(1), 5–12 (2001).
  • Cao F, Lin S, Xie X et al.In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation113(7), 1005–1014 (2006).
  • Bruchez MP. Turning all the lights on: quantum dots in cellular assays. Curr. Opin. Chem. Biol.9(5), 533–537 (2005).
  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA99(20), 12617–12621 (2002).
  • Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307(5709), 538–544 (2005).
  • Frank JA, Zywicke H, Jordan EK et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad. Radiol.9(Suppl. 2), S484–S487 (2002).
  • Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology228(2), 480–487 (2003).
  • Arbab AS, Yocum GT, Kalish H et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood104(4), 1217–1223 (2004).
  • Arbab AS, Bashaw LA, Miller BR et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation76(7), 1123–1130 (2003).
  • Bryant LH Jr, Brechbiel MW, Wu C et al. Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J. Magn. Reson. Imaging9(2), 348–352 (1999).
  • Arbab AS, Yocum GT, Wilson LB et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol. Imaging3(1), 24–32 (2004).
  • Kircher MF, Allport JR, Graves EE et al.In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res.63(20), 6838–6846 (2003).
  • Moore A, Grimm J, Han B, Santamaria P. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes53(6), 1459–1466 (2004).
  • Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem.10(2), 186–191 (1999).
  • Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn. Reson. Med.54(4), 769–774 (2005).
  • Toyoda K, Tooyama I, Kato M et al. Effective magnetic labeling of transplanted cells with HVJ-E for magnetic resonance imaging. Neuroreport15(4), 589–593 (2004).
  • van den Bos EJ, Wagner A, Mahrholdt H et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant.12(7), 743–756 (2003).
  • Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med.53(2), 329–338 (2005).
  • Zheng Q, Dai H, Merritt ME et al. A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J. Am. Chem. Soc.127(46), 16178–16188 (2005).
  • Vuu K, Xie J, McDonald MA et al. Gadolinium–rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug. Chem.16(4), 995–999 (2005).
  • Anderson SA, Lee KK, Frank JA. Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest. Radiol.41(3), 332–338 (2006).
  • Rudelius M, Daldrup-Link HE, Heinzmann U et al. Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur. J. Nucl. Med. Mol. Imaging30(7), 1038–1044 (2003).
  • Aime S, Barge A, Cabella C, Crich SG, Gianolio E. Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr. Pharm. Biotechnol.5(6), 509–518 (2004).
  • Aoki I, Takahashi Y, Chuang KH et al. Cell labeling for magnetic resonance imaging with the T(1) agent manganese chloride. NMR Biomed.19(1), 50–59 (2006).
  • Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol. Rev.77(3), 759–803 (1997).
  • Medina-Kauwe LK, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Ther.12(24), 1734–1751 (2005).
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature422(6927), 37–44 (2003).
  • Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol.17, 517–568 (2001).
  • Schmid SL. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem.66, 511–548 (1997).
  • Crich SG, Lanzardo S, Barge A et al. Visualization through magnetic resonance imaging of DNA internalized following ‘in vivo’ electroporation. Mol. Imaging4(1), 7–17 (2005).
  • Nakase I, Niwa M, Takeuchi T et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther.10(6), 1011–1022 (2004).
  • Kaplan IM, Wadia JS, Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release102(1), 247–253 (2005).
  • Zhang ZG, Jiang Q, Zhang R et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann. Neurol.53(2), 259–263 (2003).
  • Davidson JM, Krieg T, Eming SA. Particle-mediated gene therapy of wounds. Wound Repair Regen.8(6), 452–459 (2000).
  • Jacobs RE, Fraser SE. Magnetic resonance microscopy of embryonic cell lineages and movements. Science263(5147), 681–684 (1994).
  • Terreno E, Geninatti Crich S, Belfiore S et al. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Reson. Med.55(3), 491–497 (2006).
  • Crich SG, Biancone L, Cantaluppi V et al. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn. Reson. Med.51(5), 938–944 (2004).
  • Wolf GL, Burnett KR, Goldstein EJ, Joseph PM. Contrast agents for magnetic resonance imaging. Magn. Reson. Annu.231–266 (1985).
  • Mendonca-Dias MH, Gaggelli E, Lauterbur PC. Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin. Nucl. Med.13(4), 364–376 (1983).
  • Storey P, Chen Q, Li W et al. Magnetic resonance imaging of myocardial infarction using a manganese-based contrast agent (EVP 1001–1): preliminary results in a dog model. J. Magn. Reson. Imaging23(2), 228–234 (2006).
  • Thuen M, Singstad TE, Pedersen TB et al. Manganese-enhanced MRI of the optic visual pathway and optic nerve injury in adult rats. J. Magn. Reson. Imaging22(4), 492–500 (2005).
  • Saleem KS, Pauls JM, Augath M et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron34(5), 685–700 (2002).
  • Lee JH, Silva AC, Merkle H, Koretsky AP. Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn. Reson. Med.53(3), 640–648 (2005).
  • Aoki I, Wu YJ, Silva AC, Lynch RM, Koretsky AP. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage22(3), 1046–1059 (2004).
  • Bluemke DA, Weber TM, Rubin D et al. Hepatic MR imaging with ferumoxides: multicenter study of safety and effectiveness of direct injection protocol. Radiology228(2), 457–464 (2003).
  • Harisinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med.348(25), 2491–2499 (2003).
  • Harisinghani MG, Saini S, Slater GJ, Schnall MD, Rifkin MD. MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide (Combidex): preliminary observations. J. Magn. Reson. Imaging7(1), 161–163 (1997).
  • Harisinghani MG, Saini S, Weissleder R et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. Am. J. Roentgenol.172(5), 1347–1351 (1999).
  • Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology222(1), 239–244 (2002).
  • Fleige G, Seeberger F, Laux D et al.In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest. Radiol.37(9), 482–488 (2002).
  • Sato N, Kobayashi H, Hiraga A et al. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med.46(6), 1169–1173 (2001).
  • Yan GP, Hu B, Liu ML, Li LY. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents. J. Pharm. Pharmacol.57(3), 351–357 (2005).
  • Kobayashi H, Kawamoto S, Jo SK et al. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug. Chem.14(2), 388–394 (2003).
  • Bulte JW, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnol.19(12), 1141–1147 (2001).
  • Dodd CH, Hsu HC, Chu WJ et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods256(1–2), 89–105 (2001).
  • Moore A, Sun PZ, Cory D et al. MRI of insulitis in autoimmune diabetes. Magn. Reson. Med.47(4), 751–758 (2002).
  • Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol.18(4), 410–414 (2000).
  • Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem.13(3), 554–560 (2002).
  • Moore A, Josephson L, Bhorade RM, Basilion JP, Weissleder R. Human transferrin receptor gene as a marker gene for MR imaging. Radiology221(1), 244–250 (2001).
  • Moore A, Basilion JP, Chiocca EA, Weissleder R. Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta1402(3), 239–249 (1998).
  • Bulte JW, Zhang S, van Gelderen P et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl Acad. Sci. USA96(26), 15256–15261 (1999).
  • Bulte JW, Hoekstra Y, Kamman RL et al. Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn. Reson. Med.25(1), 148–157 (1992).
  • Ahrens ET, Feili-Hariri M, Xu H, Genove G, Morel PA. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med.49(6), 1006–1013 (2003).
  • Berry CC, Charles S, Wells S, Dalby MJ, Curtis AS. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int. J. Pharm.269(1), 211–225 (2004).
  • Miyoshi S, Flexman JA, Cross DJ et al. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol. Imaging Biol.7(4), 286–295 (2005).
  • Song Y, Morikawa S, Morita M et al. Magnetic resonance imaging using hemagglutinating virus of Japan-envelope vector successfully detects localization of intra-cardially administered microglia in normal mouse brain. Neurosci. Lett.395(1), 42–45 (2006).
  • Hinds KA, Hill JM, Shapiro EM et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood102(3), 867–872 (2003).
  • Hill JM, Dick AJ, Raman VK et al. Serial in vivo magnetic resonance imaging of mesenchymal stem cells using intracellular iron-fluorophore labeling Circulation108(8), 1009–1014 (2003).
  • Wu YL, Ye Q, Foley LM et al.In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc. Natl Acad. Sci. USA103, 1852–1857 (2006).
  • Ho C, Hitchens TK. A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ. Curr. Pharm. Biotechnol.5(6), 551–566 (2004).
  • Kalish H, Arbab AS, Miller BR et al. Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn. Reson. Med.50(2), 275–282 (2003).
  • Arbab AS, Bashaw LA, Miller BR et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology229(3), 838–846 (2003).
  • Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol.386, 275–299 (2004).
  • Sorgi FL, Bhattacharya S, Huang L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther.4(9), 961–968 (1997).
  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed.17(7), 513–517 (2004).
  • Arbab AS, Yocum GT, Rad AM et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed.18(8), 553–559 (2005).
  • Schroeter M, Saleh A, Wiedermann D, Hoehn M, Jander S. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magn. Reson. Med.52(2), 403–406 (2004).
  • Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother.55(6), 333–339 (2001).
  • Gutteridge JM, Halliwell B. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex. Biochem. Pharmacol.31(17), 2801–2805 (1982).
  • Gutteridge JM, Toeg D. Iron-dependent free radical damage to DNA and deoxyribose. Separation of TBA-reactive intermediates. Int. J. Biochem.14(10), 891–893 (1982).
  • Pawelczyk E, Arbab AS, Pundit SD et al. Lack of significant effects of iron oxide labeling on the expression of transferrin receptor and ferritin in mesenchymal stem cells and HeLa cells. NMR Biomed. (In press).
  • Stauber RH, Pavlakis GN. Intracellular trafficking and interactions of the HIV-1 Tat protein. Virology252(1), 126–136 (1998).
  • Kruman II, Nath A, Mattson MP. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol.154(2), 276–288 (1998).
  • Kaufman CL, Williams M, Ryle LM et al. Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation76(7), 1043–1046 (2003).
  • Watson DJ, Walton RM, Magnitsky SG et al. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum. Gene Ther.1, 1 (2006).
  • Kim JK, Kucharczyk W, Henkelman RM. Cavernous hemangiomas: dipolar susceptibility artifacts at MR imaging. Radiology187(3), 735–741 (1993).
  • Cunningham CH, Arai T, Yang PC et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med.53(5), 999–1005 (2005).
  • Stuber M, Gilson W, Schaer M, Bulte J, Kraitchman D. Shedding light on the dark spot with iron – a method that generates positive contrast in the presence of superparamagnetic nanoparticles. Proc. Intl Soc. Mag. Reson. Med.13, 2608 (2005).
  • Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn. Reson. Med.50(4), 784–790 (2003).
  • Bulte JW, Miller GF, Vymazal J, Brooks RA, Frank JA. Hepatic hemosiderosis in non-human primates: quantification of liver iron using different field strengths. Magn. Reson. Med.37(4), 530–536 (1997).
  • Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn. Reson. Med.48(1), 52–61 (2002).
  • Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn. Reson. Med.53(5), 1202–1206 (2005).
  • Young IR, Cox IJ, Bryant DJ, Bydder GM. The benefits of increasing spatial resolution as a means of reducing artifacts due to field inhomogeneities. Magn. Reson. Imaging6(5), 585–590 (1988).
  • Frahm J, Merboldt KD, Hanicke W. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn. Reson. Med.6(4), 474–480 (1988).
  • Cho ZH, Ro YM. Reduction of susceptibility artifact in gradient-echo imaging. Magn. Reson. Med.23(1), 193–200 (1992).
  • Glover GH. 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn. Reson. Med.42(2), 290–299 (1999).
  • Frank JA, Anderson SA, Kalsih H et al. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy6(6), 621–625 (2004).
  • de Vries IJ, Lesterhuis WJ, Barentsz JO et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnol.23(11), 1407–1413 (2005).
  • Arbab AS, Pandit SD, Anderson SA et al. MRI and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells22, 22 (2005).
  • Anderson SA, Glod J, Arbab AS et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood105(1), 420–425 (2005).
  • Arbab AS, Jordan EK, Wilson LB et al.In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum. Gene Ther.15(4), 351–360 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.