213
Views
82
CrossRef citations to date
0
Altmetric
Review

Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities

, &
Pages 657-675 | Published online: 09 Jan 2014

References

  • Luijendijk RW, Hop WC, van den Tol MP et al. A comparison of suture repair with mesh repair for incisional hernia. N. Engl. J. Med.343, 392–398 (2000).
  • Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J. Long term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann. Surg.4, 578–585 (2004).
  • Sanchez LJ, Bencini L, Moretti R. Recurrence after laparoscopic ventral hernia repair: results and critical review. Hernia8, 138–143 (2004).
  • Carbonell AM, Harold KL, Mahmutovic AJ et al. Local injection for the treatment of suture site pain after laparoscopic ventral hernia repair. Am. Surg.69, 688–691 (2003).
  • Leber GE, Garb JL, Alexander AI, Reed WP. Long term complications associated with prosthetic repair of incisional hernias. Arch. Surg.133, 378–382 (1998).
  • Morris-Stiff GJ, Hughes LE. The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. J. Am. Coll. Surg.186, 352–367 (1998).
  • Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V. Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia5, 142–147 (2001).
  • Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumelick V. Impact of polymer size on interface scar formation in a rat model. J. Surg. Res.103, 208–214 (2002).
  • Robinson TN, Clarke JH, Schoen J, Walsh MD. Major mesh related complication following hernia repair: events reported to the Food and Drug Administration. Surg. Endosc.19, 1556–1566 (2005).
  • Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V. Do multifilament alloplastic mesh increase infection rate? Analysis of the polymeric surface, the bacteria adherence and the in vivo consequences in a rat model. J. Biomed. Mater. Res.63, 765–771 (2002).
  • Harrell AG, Novistsky YW, Kercher KW et al. In vitro infectability of prosthetic mesh by methiciliin-resistant Staphylococcus aureus.Hernia10, 120–124 (2006).
  • Jansen B, Schumacher-Perdreau F, Peters G, Pulverer G. New aspects in the pathogenesis and prevention of polymer-associated foreign-body infections caused by coagulase-negative staphylococci. J. Invest. Surg.2, 361–380 (1989).
  • Girotto JA, Chiaramonte M, Menon NG et al. Recalcitrant abdominal wall hernias: long term superiority of autologous tissue repair. Plast. Reconstr. Surg.112, 106–114 (2003).
  • Disa JJ, Goldberg NH, Carlton JM, Robertson BC, Slezak S. Restoring abdominal wall integrity in contaminated tissue-deficient wounds using autologous fascia grafts. Plast. Reconstr. Surg.113, 673–675 (2004).
  • Ewart CH, Lankford AB, Gamboa MG. Successful closure of abdominal wall hernias using the component separation technique. Ann. Plast. Surg.50, 269–274 (2003).
  • Mathes SJ, Steinwald PM, Foster RD, Hoffman WY, Anthony JP. Complex abdominal wall reconstruction: a comparison of flap and mesh closure. Ann. Surg.232, 586–596 (2000).
  • Ramirez OM, Ruas E, Dellom AL. Components separation method for closure of abdominal wall defects: an anatomic and clinical study. Plast. Reconstr. Surg.86, 519–525 (1990).
  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissue and organs. Biomaterials27, 3675–3683 (2006).
  • Brown-Eris M, Cutshall WD, Hiles MC. A New biomaterial derived from small intestine submucosa and developed into a wound matrix device. Wounds14, 150–166 (2002).
  • Badylak SF. Regenerative medicine and developmental biology: the role of the extracellular matrix. Anat. Rec.287B, 36–41 (2005).
  • McGrath JA, Eady RA. Heparan sulphate proteoglycan and wound healing in skin. J. Pathol.183, 251–252 (1997).
  • Kosir MA, Quinn CC, Wand W, Tromp G. Matrix glycosaminoglycans in the growth phase of fibroblast: more of the story in wound healing. J. Surg. Res.92, 45–52 (2000).
  • Voytik-Harbin S, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J. Cell Biol.67, 478–491 (1997).
  • Hodde JP, Hiles MC. Bioactive FGF-2 in sterilized extracellular matrix. Wounds13, 195–201 (2001).
  • Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium8, 11–24 (2001).
  • Hodde JP, Hiles M. Virus safety of porcine derived medical devices evaluation of a viral inactivation method. Biotechol. Bioeng.79, 211–216 (2002).
  • Allman AJ, McPherson TB, Badlak SF et al. Xenogenic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation71, 1631–1640 (2001).
  • Allman A, McPherson TB, Merrill LC, Badylak SF, Metzger DW. The Th2-restricted response to xenogenic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng.8, 53–62 (2002).
  • Konstantinovic ML, Lagae P, Zheng F, Verbeken EK, De Ridder D, Deprest JA. Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. Br. J. Obstet. Gynaecol.112, 1554–1560 (2005).
  • Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R. Morphologic study of small intestinal submucosa as a body wall repair device. J. Surg. Res.103, 190–202 (2002).
  • Soiderer EE, Lantz GC, Kazacos EA, Hodde JP, Wiegand RE. Morphologic study of three collagen materials for body wall repair. J. Surg. Res.118, 161–175 (2004).
  • Badylak SF, Park K, Peppas N, McCabe G, Yoder M. Marrow-derived cells populate scaffolds composed of xenogenic extracellular matrix. Exp. Hematol.29, 1310–1318 (2001).
  • Clarke KM, Lantz GC, Salisbury SK, Badlak SF, Hiles MC, Voytik SL. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J. Surg. Res.60, 107–114 (1996).
  • Zheng MH, Chen J, Willers KC, Xu W, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res.73B, 61–67 (2005).
  • Obermiller FJ, Hodde JP, McAlexander CS, Kokini K, Badylak SF. A comparison of suture retention strength for three biomaterials. Med. Sci. Monit.10, P11–P15 (2004).
  • Freytes DO, Badylak SF, Webster TJ, Gedds LA, Rundell AE. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials25, 2353–2361 (2004).
  • Badylak S, Kokini K, Whitson B. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J. Surg. Res.99, 282–287 (2001).
  • Prevel CD, Eppley BL, Summerlin DJ, Jackson JR, McCarty M, Badylak SF. Small intestinal submucosa: utilization for repair of rodent abdominal wall defects. Ann. Plast. Surg.35, 374–380 (1995).
  • Badylak SF, Kroop B, McPherson T, Liang H, Snyder PW. Small intestinal submucosa: a rapid resorbed bioscaffold for augmentation cytoplasty in a dog model. Tissue Eng.4, 379–387 (1998).
  • Helton WS, Fisichella PM, Berger R, Horgan S, Espat NF, Abcarian H. Short term outcomes with small intestinal submucosa for ventral abdominal hernia. Arch. Surg.140, 549–562 (2005).
  • Ueno T, Pickett LC, de la Fuente SG, Lawson DC, Pappas TN. Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J. Gastrointest. Surg.8, 109–112 (2004).
  • Xanthopoulos KG, Lee JY, Gan R, Kockum K, Faye I, Boman HG. The structure of the gene for cecropin B, an antibacterial immune protein from Hyalophora cecropia. Eur. J. Biochem.172, 371–376 (1988).
  • Holtom PD, Shinar Z, Benna J, Patzakis MJ. Porcine small intestine submucosa does not show antimicrobial properties. Clin. Orthop. Relat. Res.427, 18–21 (2004).
  • Carbonell AM, Matthews BD, Dreau D et al. The susceptibility of prosthetic biomaterials to infection. Surg. Endosc.19, 430–435 (2005).
  • Badylak SF, Wu CC, Bible M, McPherson E. Host protection against deliberate bacterial contamination of an extracellular matrix bioscaffold versus Dacron™ mesh in a dog model of orthopedic soft tissue repair. J. Biomed. Mater. Res.67B, 648–654 (2003).
  • Franklin ME, Gonzales JJ, Michaelson RP, Glass JL, Chock DA. Preliminary experience with new bioactive prosthetic material for repair of hernia defects in infected fields. Hernia6, 171–174 (2002).
  • Franklin ME, Gonzales JJ, Glass JL. Use of porcine SIS as prosthetic device for laparoscopic repair of hernia in contaminated fields 2-year follow-up. Hernia8, 186–189 (2004).
  • Franklin ME, Vela I, Gonzalez JJ, Trevino JM. Use of porcine small intestinal submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: 5 year follow-up. Society of American Gastrointestinal and Endoscopic Surgeons Conference. TX, USA (2006).
  • Nfonsam VN, Brethauer S, Dan A, Sabnis A. Ventral hernia repair with surgsis gold. Three year experience. Society of American Gastrointestinal and Endoscopic Surgeons conference. TX, USA (2006).
  • Napolitano L, DiBartomeo N, Aceto L, Wuku M, Innocenti P. Use of prosthetic materials in incisional hernias: our clinical experience. G Chir.25, 141–145 (2004).
  • Ferrand BK, Kokini K, Badylak SF, Geddes LA, Hiles MC, Morff RJ. Directional porosity of porcine small intestinal submucosa. J. Biomed. Mater. Res.27, 1235–1241 (1993).
  • Monteiro-Riviere NA. Ultrastructural evaluation of the porcine integument. In: Swine in Biomedical Research. NY, USA, 641–655 (1986).
  • Harper C. Permacol™: clinical experience with a new biomaterial. Hosp. Med.62, 90–95 (2001).
  • Macleod TM, Williams G, Sanders R, Green CJ. Histological evaluation of Permacol as a subcutaneous implant over a 20 week period in the rat model. Br. J. Surg.58, 518–532 (2005).
  • TOXIKON report, 1998, data on file at Tissue Science Laboratories (TSL).
  • Zheng F, Lin Y, Verbeken E et al. Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am. J. Obstet. Gynecol.191, 1961–1970 (2004).
  • Kaleya RN. Evaluation of implant/host tissue interactions following intraperitoneal implantation of porcine dermal collagen in the rat. Hernia1, 1–8 (2005).
  • Data on file at TLS, 1998.
  • Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT. Normal intraabdominal pressure in healthy adults. J. Surg. Res.129, 231–235 (2005).
  • Oliver RF, Hulme MJ, Mudie A, Grant RA. Skin collagen allograft in the rat. Nature258, 537–539 (1975).
  • Company brochure. Tissue science 2006.
  • Gibbons RJ, MacDonaldd JB. Degradation of collagenase substrates by Bacteriodes melaninogenicus.J. Bacteriol.81, 614–621 (1961).
  • Waldvogel FA, Swartz MN. Collagenolytic activity of bacteria. J. Bacteriol.98, 662–667 (1969).
  • Oliver RF, Grant RA, Cox RW, Hulme MJ, Mudie A. Histological studies of subcutaneous and peritoneal implants of trypsin prepared dermal collagen allografts in rats. Clin. Orthop.115, 291–302 (1976).
  • Oliver RF, Barker H, Cooke A. Grant RA. Dermal collagen implants. Biomaterials23, 38–40 (1982).
  • Liyanage SH, Purohit GS, Frye JR, Giordano P. Anterior abdominal wall reconstruction with a Permacol implant. J. Plast. Reconstr. Surg.59, 553–555 (2006).
  • Verey F, Munikrishnan V, Kenefick NJ, DeFriens DJ, Pullan RD. A novel biomaterial for use in complex abdominal wall reconstruction. Colorectal Dis.6, 37–85 (2004).
  • Richards SK, Lear PA, Huskisson L, Saleem MA, Morgan JD. Porcine dermal collagen graft in pediatric renal transplantation. Pediatr. Transplant.9, 627–629 (2005).
  • Adedeji OA, Bailey CA, Varma JS. Porcine dermal collagen graft in abdominal wall reconstruction. Br. J. Plast. Surg.55, 85–86 (2002).
  • Cobb GA, Shaffer J. Cross-linked acellular porcine dermal collagen implant in laparoscopic ventral hernia repair: case-controlled study of operative variables and early complications. Int. Surg.90, S24–S29 (2005).
  • Data of File. TEI Biosciences Inc.
  • Company brochure TEI Biosciences Inc.
  • Harman EA, Frykman PN, Clagett ER, Kraemer WJ. Intraabdominal and intrathoracic pressures during lifting and jumping. Med. Sci. Sports Exerc.20, 195–201 (1998).
  • White paper: SurgiMend™: Case Study, TEI Biosciences Inc 2005.
  • Livesey S, Atkinson Y, Call T, Griffey S, Nag A. An acellular dermal transplant processed from human allograft skin retains normal extracellular matrix components and ultrasound characteristics. Poster presented at:American Association of Tissue Banks Conference. LifeCell Corporation, Branchburg, NJ, USA (1994).
  • Holton LH, Kim D, Silverman RP, Rodriguez ED, Singh N, Goldberg NH. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data. J. Long Term Med. Implants15, 547–558 (2005).
  • Viral Safety Profile, Data on file. LifeCell Corp., 2005.
  • Buinewicz B, Colony LH, Smith RJ. The use of human acellular tissue matrix in abdominal wall reconstruction – a clinical perspective. LifeCell Clinical Monograph Series (2003).
  • Menon NG, Rodriguez ED, Byrnes CK, Girotto JA, Goldberg NH, Silverman RP. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann. Plastic Surg.50, 523–527 (2003).
  • Silverman RP, Li EN, Holton LH, Sawan KT, Goldberg NH. Ventral hernia repair using allogenic acellular matrix in a swine model. Hernia8, 336–342 (2004).
  • Choe JM, Kothandapani R, James L, Bowling D. Autologous, cadaveric and synthetic materials used in sling surgery: comparative biomechanical analysis. Urology58, 482–486 (2001).
  • Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann. Plast. Surg.52, 188–194 (2004).
  • Harper JR. Tissue regeneration using human acellular tissue matrix: a histological perspective. LifeCell Clinical Monograph Series (2005).
  • Awad SS, Rao R, Berger DH, Albo D, Bellows CF. Microbiology of infected acellular dermal matrix (AlloDerm) in patients undergoing complex abdominal closure after emergency surgery. Surg. Infect.7, 209 (2006).
  • Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with Alloderm in patients at increased risk for mesh-related complications. Plast. Reconstr. Surg.116, 1263–1275 (2005).
  • Sliverman RP, Singh NK, Li EN et al. Restoring abdominal wall integrity in contaminated tissue deficient wounds using autologous fascia grafts. Plast. Reconstr. Surg.113, 673–675 (2004).
  • Guy JS, Miller R, Morris JA, Diaz J, May A. Early one-stage closure in patients with abdominal compartment syndrome: fascial replacement with human acellular dermis and bipedicle flaps. Am. Surg.12, 1025–1029 (2003).
  • Scott BG, Welsh FJ, Pham HQ et al. Early aggressive closure of the open abdomen. J. Trauma60, 17–22 (2006).
  • Kolker AR, Brown DJ, Redstone JS, Scarpinato VM, Wallack MK. Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation. Ann. Plast. Surg.55, 36–42 (2005).
  • Hirsch EF. Repair of an abdominal wall defect after a salvage laparotomy for sepsis. J. Am. Coll. Surg.198, 324–328 (2004).
  • McDonald MD, Weiss CA. Human acellular dermis for recurrent hernia. Cont. Surg.61, 276–280 (2005).
  • Schuster P, Singh J, Safadi BY, Wren SM. The use of acellular dermal matrix for contaminated abdominal wall defects: wound status predicts success. Presented at the 30th Association of VA Surgeons Meeting. OH, USA (2006).
  • Brown P, Rohwer RG, Gajdusek DC. Sodium hydroxide decontamination of Creutzfeldt-Jakob disease virus. N. Engl. J. Med.310, 727 (1984).
  • Viral inactivation study during the tuttoplast allograft manufacturing process. Institut Pasteur Texcel. Paris Franvce 1994. Data on file at Tutogen Medical, Inc.
  • Dcurtins M, Buchmann P. Bovine pericardium – a new graft material for hernial repair. Res. Exp. Med. (Berl.)180, 11–14 (1982).
  • Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia5, 113–118 (2001).
  • James NL, Poole-Warren LA, Schindhelm K et al. Comparitive evaluation of treated bovine pericardium as a xenograft for hernia repair. Biomaterials12, 801–809 (1991).
  • Kapan S, Kapan M, Goksoy E, Karabicak I, Okar H. Comparison of PTFE, pericardium bovine and fascia lata for repair of incisional hernia in rat model, experimental study. Hernia7, 39–43 (2003).
  • Van Tuil C, Saxena AK, Willital GH. Experience with management of anterior abdominal wall defects using bovine pericard. Hernia10, 41–47 (2006).
  • Oray BN. Veritas collagen matrix safety studies. Synovis Surgical Innovations 2001.
  • Company brochure. Veritas.
  • Mooradian DL, Lambert A, Wonsetler R, Oray BN. Residual DNA in biological sling materials: a comparison between PO-treated bovine pericardium, human dermis, solvent-extracted and freeze dried cadaveric fascia lata. Presented at the Seventeenth Annual Meeting of the Society for Urology and Engineering Inc. FL, USA (2002).
  • Oray BN, Lambert A, Wonsetler R, Mooradian DL. Physical and biochemical characterization of a novel non-crosslinked propylene oxide-treated acellular collagen matrix: comparison with solvent extracted and freeze dried cadaveric fascia lata. Presented at the Seventeenth Annual Meeting of the Society for Urology and Engineering Inc. FL, USA (2002).
  • Lai JY, Chang PY, Lin JN. Body wall repair using small intestinal submucosa seeded with cells. J. Pediatr. Surg.38, 1752–1755 (2003).
  • Atala A, Baude SB, Soker S, Yoo JJ, Retik A. Tissue engineered autologous bladders for patients needing cystoplast. Lancet367, 1241–1246 (2006).
  • Philip D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK. Complex extracellular matrices promote tissue specific stem cell differentiation. Stem Cells23, 288–296 (2005).
  • Jansen PL, Mertens PR, Klinge U, Schumpelick V. The biology of hernia formation. Surgery136, 1–4 (2004).
  • Yao C, Prevel P, Koch S et al. Modification of collagen matrices for enhancing angiogenesis. Cells Tissues Organs178, 189–196 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.