431
Views
78
CrossRef citations to date
0
Altmetric
Review

Neural machine interfaces for controlling multifunctional powered upper-limb prostheses

, &
Pages 43-53 | Published online: 09 Jan 2014

References

  • Esquenazia A, Meier R. Rehabilitation in limb deficiency. 4. Limb amputation. Arch. Phys. Med. Rehabil. 77, S18–24 (1996)
  • Esquenazia A. Amputation rehabilitation and prosthetic restoration: from surgery to community reintegration. Disabil. Rehabil. 26(14/15), 831–836 (2004).
  • Dillingham TR, Pezzin LE, MacKenzie EJ. Incidence, acute care length of stay, and discharge to rehabilitation of traumatic amputee patients: an epidemiologic study. Arch. Phys. Med. Rehabil. 79, 279–287 (1998).
  • Atroshi I, Rosberg H-E. Epidemiology of amputations and severe injuries of the hand. Hand Clin. 17(3), 343–350 (2001).
  • Ephraim PL, Dillingham TR, Sector M, Pezzin LE, MacKenzie EJ. Epidemiology of limb loss and congenital limb deficiency: A review of the Literature. Arch. Phys. Med. Rehabil. 84, 747–761 (2003).
  • Smith DG, Michael JW, Bowker JH (Ed.). Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles. 3rd Ed., AAOS, Rosemont, IL, USA (2004).
  • Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priority. J. Prosthet. & Orthot. 8, 2–11 (1996).
  • Gaine WJ, Smart C, Bransby-Zachary M. Upper limb traumatic amputees: Review of prosthetic use. J. Hand Surg. (Br ) 22B(1), 73–76 (1997).
  • Davidson J. A comparison of upper limb amputees and patients with upper limb injuries using the Disability of the Arm, Shoulder and Hand (DASH). Disabil. Rehabil. 26(14/15), 917–923 (2004).
  • Parker PA, Scott RN. Myoelectric control of prostheses. Crit. Rev. Biomed. Eng. 13, 283–310 (1986).
  • Basmajian JV, DeLuca CJ. Muscle Alive. 5th Ed, Williams & Wilkes, Baltimore, MD, USA (1985).
  • Muzumdar A (Ed.). Powered upper limb prostheses: Control, implementation and clinical application. Springer, Berlin, Germany (2004).
  • Hudgins B, Parker P, Scott RN. A New strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40(1), 82–94 (1993).
  • Englehart K, Hudgins B, Parker PA, Stevenson M. Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 2, 431–438 (1999).
  • Chu JU, Moon I, Mun MS. A real-time EMG pattern recognition based on linear-nonlinear feature projection for multifunction myoelectric hand. Proceedings of 2005 IEEE 9th Int. Conf. on Rehabil. Robotics. Chicago, IL, USA, 295–298 (2005).
  • Petterson PE, Anderson M. The use of self organizing maps to evaluate myoelectric signals. Biomed Sci Instrum. 35,147–152 (1999).
  • Peleg D, Braiman E, Yom-Tov E, Inbar GF. Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 290–294 (2002).
  • Karlik B, Tokhi MO, Alci M. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans. Biomed. Eng. 50(11), 1255–1261 (2003).
  • Ajiboye AB, Weir RFff. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 280–291 (2005).
  • Al-Assaf Y, Al-Nashash H. Surface myoelectric signal classification for prostheses control. J. Med. Eng. Technol. 29(5), 203–207 (2005).
  • Chan ADC, Englehart KB. Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans. Biomed. Eng. 52(1), 121–124 (2005).
  • Huang Y, Englehart KB, Hudgins B, Chan ADC. A gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52(11), 1801–1811 (2005).
  • Bu N, Fukuda O, Tsuji T. EMG-based motion discrimination using a novel recurrent neural network. J. Intelligent Infor. Syst. 21(2), 113–125 (2003).
  • Englehart K, Hudgins B, Parker P. Multifunction control of prostheses using the myoelectric signal. Chapter 5, In: Intelligent Systems and Technologies in Rehabilitation Engineering, Teodorescu H-N , Jain LC (Ed), CRC Press, Boca Raton, FL, USA, 153–208 (2000).
  • Zecca M, Micera S, Carrozza MC, Dario P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30(4–6), 459–485 (2002).
  • Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–858 (2003).
  • Farrell TR, Weir RFff, Heckathorne CW. The effect of controller delay on box and block test performance. Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls / Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 244–247 (2005).
  • Lock BA, Englehart K, Hudgin B. Real-time myoelectric control in a virtual environment to relate usability vs. Accuracy. Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls / Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 122–126 (2005).
  • Soares A, Andrade A, Lamounier E, Carrijo R. The development of a virtual myoelectric prosthesis controlled by an emg pattern recognition system based on neural networks. J. Intelligent Infor. Syst. 21(2), 127–141 (2003).
  • Sebelius FCP, Rosén BN, Lundborg GN. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J. Hand Surg. 30A(4), 780–789 (2005).
  • Fukuda O, Tsuji T, Kaneko M, Otsuka A. A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans. Robotics Automation 19(2) 210–222 (2003).
  • Kuruganti U, Hudgins B, Scott RN. Two-channel enhancement of a multifunction control system. IEEE Trans. Biomed. Eng. 42(1), 109–111 (1995).
  • Cote J, Mathieu PA. Mapping of the human upper arm muscle activity with an electrode matrix. Electromyogr. Clin. Neurophysiol. 40(4), 215–223 (2000).
  • Weir RFff, Troyk PR, DeMichele G, Kuiken T. Implantable Myoelectric Sensors (IMES) for upper-extremity prosthesis control – preliminary work. Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 1562–1565 (2003).
  • Weir RFff, Troyk PR, DeMichele G, Lowery M, Kuiken T. Implantable myoelectric sensors (IMES). Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls / Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 93–97 (2005).
  • Loeb G. BIONTM system for distributed neural prosthetic interfaces. Med. Eng. Phys. 23(1), 9–18 (2001).
  • Arcos I, Davis R, Fey K, et al. Second-generation microstimulator. Artif. Organs 26(3), 228–231 (2002).
  • Stykov NS, Lowery MM, Heckman CJ, Taflove A, Kuiken TA. Recording Intramuscular EMG signals using surface electrodes. Proceedings of the 2005 IEEE 9th Int Conf. on Rehabil. Robotics, Chicago, IL, USA, 291–294 (2005)
  • Kuiken T. Consideration of nerve-muscle grafts to improve the control of artificial arms. Technol. Disabil. 15, 105–111 (2003).
  • Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004).
  • Lipschutz RD, Miller LA, Stubblefield KA, Dumanian G, Phillips ME, Kuiken TA. Transhumeral level fitting and outcomes following targeted hyper-reinnervation nerve transfer surgery. Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls / Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 2–5 (2005).
  • Miller LA, Lipschutz RD, Stubblefield KA, Kuiken TA. Fitting and outcomes of a bilateral shoulder disarticulation amputee following targeted hyper-reinnervation nerve transfer surgery. Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls / Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 6–10 (2005).
  • Kyberd PJ, Chappell PH. The Southampton Hand: an intelligent myoelectric prosthesis. J. Rehabil. Res. Dev. 31(4), 326–334 (1994).
  • Light CM, Chappell PH, Hudgins B, Engelhart K. Intelligent multifunction myoelectric control of hand prostheses. J. Med. Eng. Technol. 26(4), 139–146 (2002).
  • Okuno R, Yoshida M, Akazawa K. Compliant grasp in a myoelectric hand prosthesisIEEE Eng. Med. Biol. Mag. 24(4), 48–56 (2005).
  • Horch KW, Dhillon GS (Ed.). Neuroprosthetics theory and practice: Theory and practice. World Scientific Publishing, Singapore, (2004).
  • Lawrence SM, Dhillon GS, Horch KW. Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J. Neurosci. Meth. 131, 9–26 (2003).
  • Lawrence SM, Dhillon GS, Jensen W, Yoshida K, Horch KW. Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans Neural Syst. Rehabil. Eng. 12(3), 345–348 (2004).
  • Lawrence SM, Larsen JO, Horch KW, Riso R, Sinkjaer T. Long-term biocompatibility of implanted polymer-based intrafascicular electrodes. J. Biomed. Mater. Res. 63(5), 501–506 (2002).
  • Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans. Biomed. Eng. 51(1), 146–157 (2004).
  • Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res. Bull. 51(4), 293–306 (2000).
  • Donaldson NDN, Zhou L, Perkins TA, Munih M, Haugland M, Sinkjaer T. Implantable telemeter for long-term electroneurographic recordings in animals and humans. Med. Biol. Eng. Comput. 41, 654–664 (2003).
  • Crampon MA, Brailovski V, Sawan M, Trochu F. Nerve cuff electrode with shape memory alloy armature: design and fabrication. Biomed. Mater. Eng. 12, 397–410 (2002).
  • De Lucca CJ. Control of upper-limb prostheses: a case for neuroelectric control J. Med. Eng. Technol. 2(2), 57–61 (1978).
  • Lichtenberg BK, De Luca CJ. Distinguishability of functionally distinct evoked neuroelectric signal on the surface of a nerve. IEEE Trans. Biomed. Eng. 26(4), 228–237 (1979).
  • Kovacs GTA, Storment CW, Rosen JM. Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans. Biomed. Eng. 39(9), 893–902 (1992).
  • DiLorenzo DJ, Edell DJ, Koris MJ, Riso RR. Chronic intraneural electrical stimulation for prosthetic sensory feedback. Proceedings of the 1st Int. IEEE EMBS Conf. on Neural Eng. Capri Island, Italy, 116–119 (2003).
  • Stieglitz T, Ruf HH, Gross M, Schuettler M, Meyer J-UA. Biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosens. Bioelectron. 17, 685–696 (2002).
  • Lago N, Ceballos D, Rodriguez FJ, Stieglitz T, Navarro X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26(14), 2021–2031 (2005).
  • Edell DJ. A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans. Biomed. Eng. 33(2), 203–214 (1986).
  • Navorro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripheral Nervous Syst. 10, 229–258 (2005).
  • Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: Implications for neural control of artificial limbs. J. Hand Surg. 29A(4), 605–615 (2004).
  • Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J. Neurophysiol. 93, 2625–2633 (2005).
  • Warwick K, Gasson M, Hutt B, et al. The application of implant technology for cybernetic systems. Arch. Neurol. 60(10), 1369–1373 (2003).
  • Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K. Invasive neural prosthesis for neural signal detection and nerve stimulation. Int. J. Adaptive Control Signal Proc. 19(5), 365–375 (2005).
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002).
  • Wolpaw JR, Birbaumer N, Heetderks WJ et al. Brain–computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000).
  • Vaughan TM, Heetderks WJ, Trejo LJ et al. Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 94–109 (2003).
  • Nicolelis MA. Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (2003).
  • Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nature Neurosci. 5, 1085–1088 (2002).
  • Friehs GM, Zerris VA, Ojakangas CL, Fellows MR, Donoghue JP.Brain-Machine and Brain-Computer Interfaces. Stroke 35 (Suppl. I), 2702–2705 (2004).
  • Lauer RT, Peckham PH, Kilgore KL, Heetderks WJ. Applications of cortical signals to neuroprosthetic control: a critical review. IEEE Trans. Rehabil. Eng. 8(2), 205–208 (2000).
  • Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214 (2000).
  • Pfurtscheller G, Neuper C, Müller GR et al. Graz-BCI: State of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 177–180 (2003).
  • Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W. A biomimetic controller for multifinger prosthesis. IEEE Trans. Rehabil. Eng. 7(2), 121–129 (1999).
  • Curcie DJ, Flint JA, Craelius W. Biomimetic finger control by filtering of distributed forelimb pressures. IEEE Trans. Neural Syst. Rehabil. Eng. 9(1), 69–75 (2001).
  • Silva J, Heim W, Chau T. A self-contained, mechanomyography-driven externally powered prosthesis. Arch. Phys. Med. Rehabil. 86, 2066–2070 (2005).
  • Gregori B, Galie E, Accornero A. Surface electromyography and mechanomyography recording: a new differential composite probe. Med. Biol. Eng. Comput. 41, 665–669 (2003).
  • Heath GH. Control of proportional grasping using a myokinemetric signal.Technol. Disabil. 15, 73–83 (2003).
  • Davalli A, Sacchettia R, Fanin S, Avanzolini G, Urbano E. Biofeedback for upper limb myoelectric prostheses. Technol. Disabil. 13, 161–172 (2000).
  • Lundborg G, Rosen B, Lindberg S. Hearing as substitution for sensation: a new principle for artificial sensibility. J. Hand Surg. (Am) 24(2), 219–224 (1999).
  • Kuiken TA, Sensinger JW, Farrell TR, Weir RFff. Phantom limb sensory f eedback through nerve transfer surgery. Conf. Proceedings of the Univ. of New Brunswick’s MyoElectric Controls/Powered Prosthetics Symposium (MEC’05). New Brunswick, Canada, 25–29 (2005).
  • Lundborg G, Rosen B. Sensory substitution in prosthetics. Hand Clin. 17(3), 481–488 (2001).
  • Riso RR. Strategies for providing upper extremity amputees with tactile and hand position feedback -moving closer to the bionic arm. Technol. Health Care 7, 401–409 (1999)
  • Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 468–472 (2005).
  • Romo R, Hernandez A, Zainos A, Broody CD, Lemus L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).
  • Simpson DC. The choice of control sustem for the multi-movement prosthesis: Extended physiological proprioception (EPP). In: The control of upper-extremity prostheses and orthoses, (Herberts P et al. Eds), Springfield, Illinois, C.C Thomas, 146–150 (1974).
  • Maruishi M,Tanaka Y, Muranaka H et al. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study. NeuroImage 21, 1604–1611 (2004).

Websites

  • OTTO BOCK HealthCare, Sensor Hand® SPEED www.ottobockus.com/products/upper_limb_prosthetics/myoelectric_hands_ sensorhand.asp Accessed June 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.