124
Views
18
CrossRef citations to date
0
Altmetric
Review

Articular cartilage repair: procedures versus products

, &
Pages 373-392 | Published online: 09 Jan 2014

References

  • Obedian RS, Grelsamer RP. Osteochondritis dissecans of the distal femur and patella. Clin. Sports Med.16(1), 157–174 (1997).
  • Clanton TO, DeLee JC. Osteochondritis dissecans. History, pathophysiology and current treatment concepts. Clin. Orthop. Relat. Res.167, 50–64 (1982).
  • Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy13(4), 456–460 (1997).
  • Aroen A, Loken S, Heir S et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am. J. Sports Med.32(1), 211–215 (2004).
  • Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy19(7), 717–721 (2003).
  • Boden BP, Pearsall AW, Garrett WE Jr, Feagin JA Jr. Patellofemoral instability: evaluation and management. J. Am. Acad. Orthop. Surg.5(1), 47–57 (1997).
  • Birk GT, DeLee JC. Osteochondral injuries. Clinical findings. Clin. Sports Med.20(2), 279–286 (2001).
  • Bentley G, Minas T. Treating joint damage in young people. Br. Med. J.320(7249), 1585–1588 (2000).
  • Elders MJ. The increasing impact of arthritis on public health. J. Rheumatol.60(Suppl.), 6–8 (2000).
  • Yelin E. Cost of musculoskeletal diseases: impact of work disability and functional decline. J. Rheumatol.68, 8–11 (2003).
  • Ruchlin HS, Elkin EB, Paget SA. Assessing cost–effectiveness analyses in rheumatoid arthritis and osteoarthritis. Arthritis Care Res.10(6), 413–421 (1997).
  • March LM, Bachmeier CJ. Economics of osteoarthritis: a global perspective. Baillieres Clin. Rheumatol.11(4), 817–834 (1997).
  • Brooks PM. The burden of musculoskeletal disease – a global perspective. Clin. Rheumatol.25(6), 778–781 (2006).
  • Hayes DW Jr, Brower RL, John KJ. Articular cartilage. Anatomy, injury, and repair. Clin. Podiatr. Med. Surg.18(1), 35–53 (2001).
  • Malinin T, Ouellette EA. Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthritis Cartilage8(6), 483–491 (2000).
  • Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J. Bone Joint Surg. Am.78(5), 721–733 (1996).
  • Dowthwaite GP, Bishop JC, Redman SN et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci.117(Pt 6), 889–897 (2004).
  • Farmer JM, Martin DF, Boles CA, Curl WW. Chondral and osteochondral injuries. Diagnosis and management. Clin. Sports Med.20(2), 299–320 (2001).
  • Newman AP. Articular cartilage repair. Am. J. Sports Med.26(2), 309–324 (1998).
  • Prakash D, Learmonth D. Natural progression of osteo-chondral defect in the femoral condyle. Knee9(1), 7–10 (2002).
  • Alleyne KR, Galloway MT. Management of osteochondral injuries of the knee. Clin. Sports Med.20(2), 343–364 (2001).
  • Jackson R. Arthroscopic Treatment of Degenerative Arthritis. McGinty JB (Ed.). Raven Press, NY, USA (1991).
  • Chang RW, Falconer J, Stulberg SD, Arnold WJ, Manheim LM, Dyer AR. A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee. Arthritis Rheum.36(3), 289–296 (1993).
  • Jackson RW, Marans HJ, Silver RS. The arthroscopic treatment of degenerative arthritis of the knee. J. Bone Joint Surg. Br.70, 332 (1988).
  • Moseley JB, O’Malley K, Petersen NJ et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med.347(2), 81–88 (2002).
  • Edwards RB 3rd, Lu Y, Nho S, Cole BJ, Markel MD. Thermal chondroplasty of chondromalacic human cartilage. An ex vivo comparison of bipolar and monopolar radiofrequency devices. Am. J. Sports Med.30(1), 90–97 (2002).
  • Edwards RB 3rd, Lu Y, Rodriguez E, Markel MD. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices. Arthroscopy18(4), 339–346 (2002).
  • Hafez MI, Coombs RR, Zhou S, McCarthy ID. Ablation of bone, cartilage, and facet joint capsule using Ho:YAG laser. J. Clin. Laser Med. Surg.20(5), 251–255 (2002).
  • Janecki CJ, Perry MW, Bonati AO, Bendel M. Safe parameters for laser chondroplasty of the knee. Lasers Surg. Med.23(3), 141–150 (1998).
  • Jazrawi LM, Chen A, Stein D et al. The effects of radiofrequency bipolar thermal energy on human meniscal tissue. Bull. Hosp. Joint Dis.61(3–4), 114–117 (2003).
  • Allen RT, Tasto JP, Cummings J, Robertson CM, Amiel D. Meniscal debridement with an arthroscopic radiofrequency wand versus an arthroscopic shaver: comparative effects on menisci and underlying articular cartilage. Arthroscopy22(4), 385–393 (2006).
  • Spahn G, Frober R, Linss W. Treatment of chondral defects by hydro jet. Results of a preliminary scanning electron microscopic evaluation. Arch. Orthop. Trauma Surg.126(4), 223–227 (2006).
  • King JS, Green LM, Bianski BM, Pink MM, Jobe CM. Shaver, bipolar radiofrequency, and saline jet instruments for cutting meniscal tissue: a comparative experimental study on sheep menisci. Arthroscopy21(7), 844–850 (2005).
  • Green LM, King JS, Bianski BM, Pink MM, Jobe CM. In vitro effects of 3 common arthroscopic instruments on articular cartilage. Arthroscopy22(3), 300–307 (2006).
  • Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique for fullthickness chondral defects: technique and clinical results. Operat. Tech. Orthop.7, 300–304 (1997).
  • Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy19(5), 477–484 (2003).
  • Frisbie DD, Oxford JT, Southwood L et al. Early events in cartilage repair after subchondral bone microfracture. Clin. Orthop. Relat. Res.(407), 215–227 (2003).
  • Kreuz PC, Erggelet C, Steinwachs MR et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy22(11), 1180–1186 (2006).
  • Robinson D, Nevo Z. Articular cartilage chondrocytes are more advantageous for generating hyaline-like cartilage than mesenchymal cells isolated from microfracture repairs. Cell Tissue Bank2(1), 23–30 (2001).
  • Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials26(17), 3617–3629 (2005).
  • Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage14(11), 1126–1135 (2006).
  • Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med.332(5), 305–311 (1995).
  • Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc. Natl Acad. Sci. USA100(10), 5840–5845 (2003).
  • Oreffo RO, Bord S, Triffitt JT. Skeletal progenitor cells and ageing human populations. Clin. Sci. (Lond.),94(5), 549–555 (1998).
  • Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg. Sports Traumatol. Arthrosc.5(4), 262–267 (1997).
  • Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg. Sports Traumatol. Arthrosc.3(4), 262–264 (1996).
  • Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy9(3), 318–321 (1993).
  • Kordas G, Szabo JS, Hangody L. Primary stability of osteochondral grafts used in mosaicplasty. Arthroscopy22(4), 414–421 (2006).
  • Ueblacker P, Burkart A, Imhoff AB. Retrograde cartilage transplantation on the proximal and distal tibia. Arthroscopy20(1), 73–78 (2004).
  • Agneskirchner JD, Brucker P, Burkart A, Imhoff AB. Large osteochondral defects of the femoral condyle: press-fit transplantation of the posterior femoral condyle (MEGA-OATS). Knee Surg. Sports Traumatol. Arthrosc.10(3), 160–168 (2002).
  • Karataglis D, Learmonth DJ. Management of big osteochondral defects of the knee using osteochondral allografts with the MEGA-OATS technique. Knee12(5), 389–393 (2005).
  • Bentley G, Biant LC, Carrington RW et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J. Bone Joint Surg. Br.85(2), 223–230 (2003).
  • Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J. Bone Joint Surg. Am.85-A(Suppl. 2), 25–32 (2003).
  • Hoser C, Bichler O, Bale R et al. A computer assisted surgical technique for retrograde autologous osteochondral grafting in talar osteochondritis dissecans (OCD): a cadaveric study. Knee Surg. Sports Traumatol. Arthrosc.12(1), 65–71 (2004).
  • Wu JZ, Herzog W, Hasler EM. Inadequate placement of osteochondral plugs may induce abnormal stress-strain distributions in articular cartilage – finite element simulations. Med. Eng. Phys.24(2), 85–97 (2002).
  • Huang FS, Simonian PT, Norman AG, Clark JM. Effects of small incongruities in a sheep model of osteochondral autografting. Am. J. Sports Med.32(8), 1842–1848 (2004).
  • Kordas G, Szabo JS, Hangody L. The effect of drill-hole length on the primary stability of osteochondral grafts in mosaicplasty. Orthopedics28(4), 401–404 (2005).
  • Whiteside RA, Jakob RP, Wyss UP, Mainil-Varlet P. Impact loading of articular cartilage during transplantation of osteochondral autograft. J. Bone Joint Surg. Br.87(9), 1285–1291 (2005).
  • Evans PJ, Miniaci A, Hurtig MB. Manual punch versus power harvesting of osteochondral grafts. Arthroscopy20(3), 306–310 (2004).
  • Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J. Bone Joint Surg. Am.87(2), 351–360 (2005).
  • Tew SR, Kwan AP, Hann A, Thomson BM, Archer CW. The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum.43(1), 215–225 (2000).
  • Minns RJ, Muckle DS. Mechanical and histological response of carbon fibre pads implanted in the rabbit patella. Biomaterials10(4), 273–276 (1989).
  • Minns RJ, Flynn M. Intra-articular implant of filamentous carbon fibre in the experimental animal. J. Bioeng.2(3–4), 279–286 (1978).
  • Curtin W, Reville W, Heapes M, Lyons J, Muckle D. The chondrogenic potential of carbon fiber and carbon fiber periosteum implants: an ultrastructural study in the rabbit. Osteoarthritis Cartilage2(4), 253–258 (1994).
  • Robinson D, Efrat M, Mendes DG, Halperin N, Nevo Z. Implants composed of carbon fiber mesh and bone-marrow-derived, chondrocyte-enriched cultures for joint surface reconstruction. Bull. Hosp. Joint Dis.53(1), 75–82 (1993).
  • Brittberg M, Faxen E, Peterson L. Carbon fiber scaffolds in the treatment of early knee osteoarthritis. A prospective 4-year followup of 37 patients. Clin. Orthop. Relat. Res.307, 155–164 (1994).
  • Feczko P, Hangody L, Varga J et al. Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy19(7), 755–761 (2003).
  • Akbar A, Diedrichs V, Wagner UA. [Massive arthrofibrosis of the knee joint after carbon fibre rod implantation. Two cases]. Z. Orthop. Ihre Grenzgeb.141(5), 570–572 (2003).
  • Meister K, Cobb A, Bentley G. Treatment of painful articular cartilage defects of the patella by carbon-fibre implants. J. Bone Joint Surg. Br.80(6), 965–970 (1998).
  • Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Evaluation of Gateshead carbon fibre rod as an implant material for repair of osteochondral defects: a morphological and mechanical study in the rabbit knee. Biomaterials23(19), 3943–3955 (2002).
  • Debnath UK, Fairclough JA, Williams RL. Long-term local effects of carbon fibre in the knee. Knee11(4), 259–264 (2004).
  • Peterson L, Menche D, Grande D. Chondrocyte transplantation – an experimental rabbit in the rabbit. In: 30th Annual Orthopaedic Research Society. Orthopaedic Research Society, GA, USA 218 (1984).
  • Grande DA, Pitman MI, Peterson L, Menche D, Klein M. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J. Orthop. Res.7(2), 208–218 (1989).
  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med.331(14), 889–895 (1994).
  • Grigolo B, Roseti L, De Franceschi L et al. Molecular and immunohistological characterization of human cartilage two years following autologous cell transplantation. J. Bone Joint Surg. Am.87(1), 46–57 (2005).
  • Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res.374, 212–234 (2000).
  • Minas T, Bryant T. The role of autologous chondrocyte implantation in the patellofemoral joint. Clin. Orthop. Relat. Res.436, 30–39 (2005).
  • Henderson IJ, Lavigne P. Periosteal autologous chondrocyte implantation for patellar chondral defect in patients with normal and abnormal patellar tracking. Knee13(4), 274–279 (2006).
  • Wood JJ, Malek MA, Frassica FJ et al. Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration. J. Bone Joint Surg. Am.88(3), 503–507 (2006).
  • Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin. Orthop. Relat. Res.391(Suppl.), S349–S361 (2001).
  • King PJ, Bryant T, Minas T. Autologous chondrocyte implantation for chondral defects of the knee: indications and technique. J. Knee Surg.15(3), 177–184 (2002).
  • Henderson I, Tuy B, Oakes B. Reoperation after autologous chondrocyte implantation. Indications and findings. J. Bone Joint Surg. Br.86(2), 205–211 (2004).
  • Driesang IM, Hunziker EB. Delamination rates of tissue flaps used in articular cartilage repair. J. Orthop. Res.18(6), 909–911 (2000).
  • Ueno T, Kagawa T, Mizukawa N, Nakamura H, Sugahara T, Yamamoto T. Cellular origin of endochondral ossification from grafted periosteum. Anat. Rec.264(4), 348–357 (2001).
  • Briggs TW, Mahroof S, David LA, Flannelly J, Pringle J, Bayliss M. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee. J. Bone Joint Surg. Br.85(7), 1077–1083 (2003).
  • Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J. Orthop. Surg. (Hong Kong)11(1), 10–15 (2003).
  • Haddo O, Mahroof S, Higgs D et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee11(1), 51–55 (2004).
  • Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee13(3), 203–210 (2006).
  • Bartlett W, Skinner JA, Gooding CR et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br.87(5), 640–645 (2005).
  • Kirilak Y, Pavlos NJ, Willers CR et al. Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors. Int. J. Mol. Med.17(4), 551–558 (2006).
  • Brittberg M, Sjogren-Jansson E, Lindahl A, Peterson L. Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. Biomaterials18(3), 235–242 (1997).
  • Willers C, Chen J, Wood D, Xu J, Zheng MH. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng.11(7–8), 1065–1076 (2005).
  • Zheng M, Willers C, Kirilak L et al. Matrix-induced autologous chondrocyte implantation (MACI®): biological and histological assessment. Tissue Eng.13(4), 737–746 (2007).
  • Gigante A, Bevilacqua C, Ricevuto A, Mattioli-Belmonte M, Greco F. Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery. Knee Surg. Sports Traumatol. Arthrosc.15(1), 88–92 (2007).
  • Marlovits S, Striessnig G, Kutscha-Lissberg F et al. Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg. Sports Traumatol. Arthrosc.13(6), 451–457 (2005).
  • Bartlett W, Gooding CR, Carrington RW, Skinner JA, Briggs TW, Bentley G. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J. Bone Joint Surg. Br.87(3), 330–332 (2005).
  • Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) – 5-year follow-up. Knee13(3), 194–202 (2006).
  • Ehlers EM, Behrens P, Wunsch L, Kuhnel W, Russlies M. Effects of hyaluronic acid on the morphology and proliferation of human chondrocytes in primary cell culture. Ann. Anat.183(1), 13–17 (2001).
  • Grigolo B, Roseti L, Fiorini M et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials22(17), 2417–2424 (2001).
  • Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J. Cell Physiol.179(2), 142–148 (1999).
  • Marcacci M, Zaffagnini S, Kon E, Visani A, Iacono F, Loreti I. Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg. Sports Traumatol. Arthrosc.10(3), 154–159 (2002).
  • Gobbi A, Kon E, Berruto M, Francisco R, Filardo G, Marcacci M. Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review. Am. J. Sports Med.34(11), 1763–1773 (2006).
  • Pavesio A, Abatangelo G, Borrione A et al. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found. Symp.249, 203–217 (2003).
  • Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol.57(1), 3–8 (2006).
  • Hollander AP, Dickinson SC, Sims TJ et al. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng.12(7), 1787–1798 (2006).
  • Grigolo B, De Franceschi L, Roseti L, Cattini L, Facchini A. Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials26(28), 5668–5676 (2005).
  • Galois L, Hutasse S, Cortial D et al. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials27(1), 79–90 (2006).
  • Chaipinyo K, Oakes BW, Van Damme MP. The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J. Orthop. Res.22(2), 446–455 (2004).
  • Furthmayr H, Timpl R. Immunochemistry of collagens and procollagens. Int. Rev. Connect Tissue Res.7, 61–99 (1976).
  • Charriere G, Bejot M, Schnitzler L, Ville G, Hartmann DJ. Reactions to a bovine collagen implant. Clinical and immunologic study in 705 patients. J. Am. Acad. Dermatol.21(6), 1203–1208 (1989).
  • Teixeira JO, Urist MR. Bone morphogenetic protein induced repair of compartmentalized segmental diaphyseal defects. Arch. Orthop. Trauma Surg.117(1–2), 27–34 (1998).
  • Adachi N, Ochi M, Uchio Y, Iwasa J, Furukawa S, Deie M. Osteochondral lesion located at the lateral femoral condyle reconstructed by the transplantation of tissue-engineered cartilage in combination with a periosteum with bone block: a case report. Knee Surg. Sports Traumatol. Arthrosc.12(5), 444–447 (2004).
  • Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J. Bone Joint Surg. Br.84(4), 571–578 (2002).
  • Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K. Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif. Organs27(3), 249–255 (2003).
  • Katsube K, Ochi M, Uchio Y et al. Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel. Comparison with cultured chondrocytes in suspension. Arch. Orthop. Trauma Surg.120(3–4), 121–127 (2000).
  • Yokoyama A, Sekiya I, Miyazaki K, Ichinose S, Hata Y, Muneta T. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res.322(2), 289–298 (2005).
  • Andereya S, Maus U, Gavenis K et al. [First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee]. Z. Orthop. Ihre Grenzgeb.144(3), 272–280 (2006).
  • Rudert M, Wilms U, Hoberg M, Wirth CJ. Cell-based treatment of osteochondral defects in the rabbit knee with natural and synthetic matrices: cellular seeding determines the outcome. Arch. Orthop. Trauma Surg.125(9), 598–608 (2005).
  • Wakitani S, Kimura T, Hirooka A et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J. Bone Joint Surg. Br.71(1), 74–80 (1989).
  • Kim G, Okumura M, Bosnakovski D, Ishiguro T, Kadosawa T, Fujinaga T. Biological properties of allogenic articular chondrocytes on the surface of bovine cartilage explants in vitro. J. Vet. Med. A Physiol. Pathol. Clin. Med.50(8), 418–423 (2003).
  • Masuoka K, Asazuma T, Ishihara M et al. Tissue engineering of articular cartilage using an allograft of cultured chondrocytes in a membrane-sealed atelocollagen honeycomb-shaped scaffold (ACHMS scaffold). J. Biomed. Mater. Res. B Appl. Biomater.75(1), 177–184 (2005).
  • Hendrickson DA, Nixon AJ, Grande DA et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J. Orthop. Res.12(4), 485–497 (1994).
  • Wakitani S, Goto T, Pineda SJ et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am.76(4), 579–592 (1994).
  • Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J. Bone Joint Surg. Am.85-A(Suppl. 2), 111–116 (2003).
  • Facchini A, Lisignoli G, Cristino S et al. Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology43(3–4), 471–480 (2006).
  • Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng.12(3), 527–536 (2006).
  • Kuroda R, Usas A, Kubo S et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum.54(2), 433–442 (2006).
  • Noth U, Tuli R, Osyczka AM, Danielson KG, Tuan RS. In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells. Tissue Eng.8(1), 131–144 (2002).
  • De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum.50(1), 142–150 (2004).
  • Dragoo JL, Samimi B, Zhu M et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J. Bone Joint Surg. Br.85(5), 740–747 (2003).
  • Nathan S, Das De S, Thambyah A, Fen C, Goh J, Lee EH. Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng.9(4), 733–744 (2003).
  • Schmitt B, Ringe J, Haupl T et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation71(9–10), 567–577 (2003).
  • Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin. Orthop. Relat. Res. (412), 196–212 (2003).
  • Miao Z, Jin J, Chen L et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int.30(9), 681–687 (2006).
  • Zheng MH, Pembrey R, Niutta S, Stewart-Richardson P, Farrugia A. Challenges in the evaluation of safety and efficacy of human tissue and cell based products. ANZ J. Surg.76(9), 843–849 (2006).
  • Ochi K, Derfoul A, Tuan RS. A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro. Osteoarthritis Cartilage14(1), 30–38 (2006).
  • Lisignoli G, Cristino S, Piacentini A, Cavallo C, Caplan AI, Facchini A. Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: involvement of Cd44 and Cd54. J. Cell Physiol.207(2), 364–373 (2006).
  • Tatebe M, Nakamura R, Kagami H, Okada K, Ueda M. Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy7(6), 520–530 (2005).
  • Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy22(10), 1085–1092 (2006).
  • Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg. Sports Traumatol. Arthrosc.14(9), 834–842 (2006).
  • Fu FH, Zurakowski D, Browne JE et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up. Am. J. Sports Med.33(11), 1658–1666 (2005).
  • Knutsen G, Engebretsen L, Ludvigsen TC et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am.86-A(3), 455–464 (2004).
  • Basad E, Stürz H, Steinmeyer J. [Treatment of chondral defects with MACI or microfracture. First results of a comparative clinical study.] Orthopädische Praxis40, 6–10 (2004).
  • Dozin B, Malpeli M, Cancedda R et al. Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin. J. Sport Med.15(4), 220–226 (2005).
  • Fu FH. Rate of improvement was not different after osteochondral repair with matrix-induced autologous chondrocyte implantation or autologous chondrocyte implantation with a cover made from porcine-derived type I/type III collagen. J. Bone Joint Surg. Am.87(11), 2593 (2005).
  • Schneider U, Anderereya S. First results of a prospective randomised trial of traditional autologous chondrocyte transplantation and CaReS technology. Zeitschrift Orthopad. Ihre Grenzgeleit141 (2003).
  • Ruano-Ravina A, Jato Diaz M. Autologous chondrocyte implantation: a systematic review. Osteoarthritis Cartilage14(1), 47–51 (2006).
  • Wasiak J, Clar C, Villanueva E. Autologous cartilage implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst. Rev.3, CD003323 (2006).
  • Browne JE, Anderson AF, Arciero R et al. Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects. Clin. Orthop. Relat. Res.436, 237–245 (2005).
  • Amin AA, Bartlett W, Gooding CR et al. The use of autologous chondrocyte implantation following and combined with anterior cruciate ligament reconstruction. Int. Orthop.30(1), 48–53 (2006).
  • Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am. J. Sports Med.30(1), 2–12 (2002).
  • Schimmer RC, Brulhart KB, Duff C, Glinz W. Arthroscopic partial meniscectomy: a 12-year follow-up and two-step evaluation of the long-term course. Arthroscopy14(2), 136–142 (1998).
  • Jakobsen RB, Engebretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J. Bone Joint Surg. Am.87(10), 2232–2239 (2005).
  • Lu Y, Adkisson HD, Bogdanske J et al. In vivo transplantation of neonatal ovine neocartilage allografts: determining the effectiveness of tissue transglutaminase. J. Knee Surg.18(1), 31–42 (2005).
  • Feder J, Adkisson HD, Kizer N et al. The promise of chondral repair using neocartilage. In: Tissue Engineering in Musculoskeletal Clinical Practice. Sandell L, Grodzinsky A (Eds). American Academy of Orthopaedic Surgeons, PA, USA, 219–226 (2004).
  • Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ. An allogenic cell-based implant for meniscal lesions. Am. J. Sports Med.34(11), 1779–1789 (2006).
  • Marlovits S, Tichy B, Truppe M, Gruber D, Schlegel W. Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor. Int. J. Artif. Organs26(4), 319–330 (2003).
  • Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage11(12), 879–890 (2003).
  • Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Hong J, Kandel RA. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J. Bone Joint Surg. Am.85-A(Suppl. 2), 101–105 (2003).
  • Saini S, Wick TM. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog.19(2), 510–521 (2003).
  • Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast. Reconstr. Surg.119(1), 112–120 (2007).
  • Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yu SM. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials27(30), 5268–5276 (2006).
  • Lindahl A, Brittberg M, Peterson L. Health economics benefits following autologous chondrocyte transplantation for patients with focal chondral lesions of the knee. Knee Surg. Sports Traumatol. Arthrosc.9(6), 358–363 (2001).
  • Clar C, Cummins E, McIntyre L et al. Clinical and cost–effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation. Health Technol. Assess.9(47), iii–iv, ix–x, 1–82 (2005).
  • Derrett S, Stokes EA, James M, Bartlett W, Bentley G. Cost and health status analysis after autologous chondrocyte implantation and mosaicplasty: a retrospective comparison. Int. J. Technol. Assess. Health Care21(3), 359–367 (2005).
  • Wildner M, Sangha O, Behrend C. Wirtschaftlichkeitsuntersuchung zur autologen Chondrozytentransplantation. Arthroskopie13, 123–131 (2000).

Website

  • TIGENIX. TiGenix announces positive Phase III trial results. Beyen G, Motmans K (Eds). www.tigenix.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.