374
Views
185
CrossRef citations to date
0
Altmetric
Review

Bioactive scaffolds for bone and ligament tissue

, &
Pages 405-418 | Published online: 09 Jan 2014

References

  • Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol.22, 81–91 (2003).
  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I. Structure, blood supply, cells, matrix, and mineralization. Instr. Course Lect.45, 371–386 (1996).
  • Ackerman LV, Spjut HJ, Abell MR. Bones and Joints (Monographs in Pathology). Williams and Wilkins, MD, USA (1976).
  • Owen M. The origin of bone cells. Int. Rev. Cytol.28, 213–381 (1970).
  • Heinegard D, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J.3, 2042–2051 (1989).
  • Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res.2, 483–487 (1993).
  • Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol.1, E131–E138 (1999).
  • Causa F, Netti PA, Ambrosio L et al. Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J. Biomed. Mater. Res.76A, 151 (2006).
  • Silver FH. Biomaterials, Medical Devices, and Tissue Engineering: An Integrated Approach. Chapman & Hall, London, UK, 92 (1994).
  • Amiel D, Billings E Jr, Harwood FL. Collagenase activity in anterior cruciate ligament: protective role of the synovial sheath. J. Appl. Physiol.69, 902–906 (1990).
  • Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Annu. Rev. Biomed. Eng.6, 131–156 (2004).
  • Petite H, Viateau V, Bensaid W et al. Tissue engineered bone regeneration. Nat. Biotech.18, 959 (2000).
  • Spitzer R, Perka C, Lindenhayn K, Zippel H. Matrix engineering for osteogenic differentiation of rabbit periosteal cells using α-tricalcium phosphate particles in a three-dimensional fibrin culture. J. Biomed. Mater. Res. Part A59(4), 690–696 (2002).
  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell. Mol. Med.10(1), 7–19 (2006).
  • Williams DF. Bone Engineering (1st Edition). Em squared, Toronto, Canada, 577 (1999).
  • Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J. Am. Acad. Orthop. Surg.3, 1–8 (1995).
  • Sassard WR, Eidman DK, Gray PM et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics23, 1059–1064 (2000).
  • Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res.329, 300–309 (1996).
  • Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine1(20), 1055–1060 (1995).
  • Lobo Gajiwala A, Agarwal M, Puri A, Lima C, Duggal A. Reconstructing tumour defects: lyophilised, irradiated bone allografts. Cell Tissue Bank4, 109–118 (2003).
  • Aho AJ, Ekfors T, Dean PB, Aro HT, Ahonen A, Nikkanen V. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin. Orthop. Relat. Res.307, 200–213 (1994).
  • Pennisi E. Tending tender tendons. Science295, 1011 (2002).
  • Fu FH, Bennett CH, Lattermann C, Ma CB. Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am. J. Sports Med.27, 821–830 (1999).
  • Weitzel PP, Richmond JC, Altman GA, Calabro T, Kaplan DL. Future direction of the treatment of ACL ruptures. Orthop. Clin. North Am.33, 653–661 (2002).
  • Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee ligament repairs and reconstructions. J. Bone Joint Surg.66, 344–352 (1984).
  • Woo SLY, Buckwalter JA. Injury and Repair of the Musculoskeletal Soft Tissues. Amrican Academy of Orthopaedic Surgeons, IL, USA, 45–101 (1988).
  • Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA. Tissue engineering: orthopaedic applications. In: Annual Review of Biomedical Engineering. Yarmush ML, Diller KR, Toner M (Eds). Annual Reviews Inc., CA, USA, 19–46 (1999).
  • Yahia L. Ligaments and Ligamentoplasties. Springer, Berlin, Germany (1997).
  • McPherson GK, Mendenhall HV, Gibbons DF et al. Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin. Orthop.196, 186–195 (1985).
  • Olson EJ, Kang JD, Fu FH, Georgescu HI, Mason GC, Evans CH. The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am. J. Sports Med.16, 558–570 (1988).
  • Smith BA, Livesay GA, Woo SL. Biology and biomechanics of the anterior cruciate ligament. Clin. Sports Med.12, 637–670 (1993).
  • Woo SLY, An KN, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, biology, and biomechanics of tendon, ligament and meniscus. In: Orthopaedic Basic Science. Simon SR (Ed.). American Academy of Orthopaedic Surgeons, IL, USA, 45–87 (1994).
  • Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA. Tissue engineering: orthopaedic applications. In: Annual Review of Biomedical Engineering. Yarmush ML, Diller KR, Toner M (Eds). Annual Reviews, CA, USA, 19–46 (1999).
  • Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol.22(2), 80–86 (2004).
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials27, 3413–3431 (2006).
  • Chen VJ, Ma PX. Nano-fibrous poly(L-lactid) scaffolds with interconnected spherical macropores. Biomaterials25, 2065–2073 (2004).
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials21, 2529–2543 (2000).
  • Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng.32(12), 1728–1743 (2004).
  • Griffith LG, Naughton G. Tissue engineering. Current challenges and expanding opportunities. Science295, 1009–1014 (2002).
  • Elbert SE, Hubbell JA. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res.31, 183–201 (2001).
  • Hou Q, Grijpma DW, Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching techniques. Biomaterials24, 1937–1947 (2003).
  • Yazemski MJ, Payne RG, Hanes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials17, 175–185 (1996).
  • Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials27, 964–973 (2006).
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J. Mater. Sci: Mater. Med.16, 189–195 (2005).
  • Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN. Mechanically anisotropic PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater.1, 643–652 (2005).
  • Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials24, 2363–2378 (2003).
  • Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res.44, 446–455, (1999).
  • Diamant J, Keller A, Baer E, Litt M, Arridge RG. Collagen ultrastructure and its relation to mechanical properties as a function of ageing. Proc. R. Soc. London Ser. B180, 293–315 (1972).
  • Spector M, Michno MJ, Smarook WH, Kwiatkowski GT. A high-modulus polymer for porous orthopaedic implants: biomechanical compatibility of porous implants. J. Biomed. Mater. Res.12, 665–677 (1978).
  • Von Recum AF. Handbook of Biomaterials Evaluation: Scientific, Technical and Clinical Testing of Implant Materials. Macmillan, NY, USA (1986).
  • Konikoff JJ, Billings W, Nelson LJ, Hunter JM. Development of a single stage active tendon prosthesis. I. Distal end attachment. J. Bone Joint Surg. Am.56, 848 (1974).
  • Iannace S, Sabatini G, Ambrosio L, Nicolais L. Mechanical behaviour of composite artificial tendons and ligaments. Biomaterials16(9) 675–680 (1995).
  • Meyer U, Joos U, Wiesmann HP. Biological and biophysical principles in extra corporal bone tissue engineering – Part I. Int. J. Oral Maxillofac. Surg.33, 325–332 (2004).
  • Burg KJL, Porters S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials21, 2347–2359 (2000).
  • Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur. Cell. Mater.9, 39–49 (2005).
  • Malafaya PB. Sappers F, Reis RL. Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behaviour to be used as drug delivery carriers. J. Mater. Res. Mater. Med.17(4), 371–377 (2006).
  • Ueyama Y, Ishikawa K, Mano T et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials23(9), 2027–2033 (2002).
  • Zhao F, Yin Y, Lu WW et al. Preparation and histological evaluation of biomimetic three-dimesional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials23, 3227 (2002).
  • Gong S, Wang H, Sun Q, Xue ST, Wang JY. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials27, 3793–3799 (2006).
  • Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid-supplemented bone graft in bone healing: experimental study in rabbit. J. Biomat. Appl.20(3), 209–220 (2006).
  • Solchaga LA, Temenoff JS, Jizong G, Mikos AG, Kaplan AI, Goldberg VM. Repair of osteochondral defects with haluronan and polyester-based scaffolds. Ostheoarthr. Cartil.13(4), 297–309 (2005).
  • Xudong L, Li J, Balian G, Laurencin CT, Anderson DG. Demineralized bone matrix gelatine as scaffold for osteochondral tissue engineering. Biomaterials27(11), 2426–2433 (2006).
  • Jackson DW, Simon TM, Lowery W, Gendler E. Biologic remodelling after anterior cruciate ligament reconstruction using a collagen matrix derived from demineralized bone. An experimental study in the goat model. Am. J. Sports Med.24, 405–414 (1996).
  • Huang Q, Goh JC, Hutmacher DW, Lee EH. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Eng.8, 469 (2002).
  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP2 scaffolds for bone tissue engineering. Biomaterials27(16), 3115–3124 (2006).
  • Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials27, 3973–3979 (2006).
  • Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials23, 4221–4231 (2002).
  • Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev.54, 933–961 (2002).
  • Williams JM, Adewunmi A, Schek RM et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials26, 4817–4827 (2005).
  • Muggli DS, Burkoth AK, Anseth KS. Crosslinked polyanhydrides for use in orthopaedic applications: degradation behavior and mechanics. J. Biomed. Mater. Res.46, 271–278 (1999).
  • Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R. Rep.34, 147–230 (2001).
  • Navarro M, del Valle S, Martínez S et al. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials25, 4233–4241 (2004).
  • Xu HK, Weir MD, Burguera EF, Fraser AM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials27, 4279–4287 (2006).
  • Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J. Biomater. Sci. Polym. Ed.15, 543–562 (2004).
  • Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomechanical applications. J. Appl. Biomater. Biomech.2, 65–73 (2004).
  • Jackson DW, Heinrich JT, Simon TM. Biologic and synthetic implants to replace the anterior cruciate ligament. Arthroscopy10, 442–452 (1994).
  • Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res.29, 1363–1371 (1995).
  • Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials26, 1523–1532 (2005).
  • Van Audekercke R, Martens M. Natural and Living Biomaterials. CRC Press, FL, USA, 89 (1984).
  • Bourke SL, Kohn J, Dunn MG. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng.10, 43–52 (2004).
  • Buma P, Kok HJ, Blankevoort L, Kuijpers W, Huiskes R, Van Kampen A. Augmentation in anterior cruciate ligament reconstruction – a histological and biomechanical study on goats. Int. Orthop.28, 91–96 (2004).
  • Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J. Biomed. Mater. Res.29, 1363–1671 (1995).
  • Dunn MG, Tria AJ, Kato YP et al. Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits. Am. J. Sports Med.20, 507–515 (1992).
  • Chen J, Altman GH, Karageorgiou V et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J. Biomed. Mater. Res.67A, 559–570 (2003).
  • Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials26, 1523–1532 (2005).
  • Lu HH, Cooper JA Jr, Manuel S et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials26, 4805–4816 (2005).
  • LaurencinCT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials26, 7530–7536 (2005).
  • Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate. Biomaterials20(19), 1799–1806 (1999).
  • Linhart W, Peters F, Lehmann W et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J. Biomed. Mater. Res.54, 166–171 (2001).
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials25, 1279–1287 (2004).
  • Hubbell JA. Biomaterials in tissue engineering. Biotechnology13, 565–576 (1995).
  • Ciapetti G, Ambrosio L, Savarino L et al. Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study. Biomaterials24, 3815–3824 (2003).
  • Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res.54, 284–293 (2001).
  • Urist MR, Nogami H. Morphogenetic substratum for differentiation of cartilage in tissue culture. Nature225, 105–112 (1970).
  • Wang EA, Rosen V, D’Alessandro JS et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl Acad. Sci. USA87, 2220–2224 (1990).
  • Rosen V, Thies RS. The BMP proteins in bone formation and repair. Trends Genet.8, 97–102 (1992).
  • Wilson JM. Adenoviruses as gene-delivery vehicles. N. Engl. J. Med.334, 1185–1187 (1996).
  • Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin. Orthop. Relat. Res.324, 39–46 (1996).
  • Lucas PA, Laurencin C, Syftestad GT et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. J. Biomed. Mater. Res.24, 901–911 (1990).
  • Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med.7, 259–264 (2001).
  • Yamada KM. Adesive recognition sequences. J. Biol. Chem.266, 12809–12812 (1991).
  • Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by smalll synthetic fragments of the molecule. Nature309, 30–33 (1984).
  • Sakiyama-Elbert SE, Hubbell JA. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res.31, 183–201 (2001).
  • Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interaction and physico–chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol. Eng.19, 255–261 (2002).
  • Polak J, Hench L. Gene therapy progress and prospects: in tissue engineering. Gene Ther.12, 1725–1733 (2005).
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J.10(Suppl. 2), S96–S101 (2001).
  • Davies JE, Baldan N. Scanning electron microscopy of the bone bioactive implant interface. J. Biomed. Mater. Res.36, 429–440 (1997).
  • Hench LL, Polak JM. Third-generation biomedical materials. Science295, 1014–1017 (2002).
  • Jones JR, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci.7, 301–307 (2003).
  • Jones JR, Hench LL. The effect of processing variables on the properties of bioactive glass foams. J. Biomed. Mater. Res.B68, 36–44 (2004).
  • Pryce R, Hench LL. Tailoring of bioactive glasses for the release of nitric oxide as an osteogenic stimulus. J. Mater. Chem.14, 1–9 (2004).
  • Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials24, 2133–2151 (2003).
  • Hench LL. Bioceramics: from concept to clinic. J. Am. Ceram. Soc.74, 1485–1510 (1991).
  • Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials26, 5983–5990 (2005).
  • Kimura Y. Biodegradable polymers. In: Biomedical Applications in Polymeric Materials. Tsuruta T, Hayashi T (Eds). CRC Press, FL, USA, 163 (1993).
  • Kim HW, Knowles JC, Kim HE. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J. Biomed. Mater. Res.72A, 136–145 (2005).
  • Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM. Fabrication and characterization of 3D polyethereherketone/HA (PEEK/HA) composites. Biomaterials24(13), 3115–3123 (2003).
  • Pitt CG, Gratzel MM, Kimmel GL. Aliphatic polyesters. 2. The degradation of poly(DL-lactide), poly(ε-caprolactone) and their copolymers in vivo. Biomaterials2, 215–220 (1981).
  • Gabelnick HL. Biodegradable implants: alternative approaches. In: Advances in Human Fertility and Reproductive Endocrinology: vol. 2: Long Acting Steroid Contraception. Mishell DR (Ed.). Raven Press, NY, USA, 149–173 (1983).
  • Salernitano E, Migliaresi C. Composite materials for biomedical applications: a review. J. Appl. Biomater. Biomech.1, 3–18 (2003).
  • Guarino V, Gloria A, Causa F, De Santis R, Ambrosio L. Scaffolds for connective tissue regeneration. Biomed. Pharmacother.60, 471 (2006).
  • Causa F, Sarracino F, De Santis R, Netti PA, Ambrosio L, Nicolais L. Basic structural parameters for the design of composite structures as ligament augmentation devices. J. Appl. Biomater. Biomech.4, 21–30 (2006).
  • Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials19(23), 2101–2127 (1998).
  • Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann. NY Acad. Sci.961, 83–95 (2002).
  • Jones JR, Hench LL. Biomedical materials for new millenium: perspective on the future. Mater. Sci. Technol.17, 891–900 (2001).
  • Sun W, Lal P. Recent development on computer aided tissue engineering – a review. Comput. Methods Prog. Biomed.67(2), 85–103 (2002).
  • Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering, a two part report. Part I of a two part report: traditional approaches. Tissue Eng.7(6), 679–690 (2001).
  • Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos. Sci. Technol.63, 2417–2429 (2003).
  • Greenspan DC. Bioactive ceramic implant materials: current opinion in solid state and materials. Science4, 389–393 (1999).
  • Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol. Bioeng.91, 3 (2005).
  • Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials26, 3929–3939 (2005).
  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP2 scaffolds for bone tissue engineering. Biomaterials27, 3115–3124 (2006).
  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotech.22(12), 643–652 (2004).
  • Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials24, 1487–1497 (2003).
  • Cheah CM, Chua CK, Leong KF, Cheong CH, Naing MW. An automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng.10(2), 595–610 (2004).
  • Ambrosio L, Apicella A, Mensitieri M et al. Physical and chemical decay of prosthetic ACL after in vivo implantation. Clin. Mater.15, 29–36 (1994).
  • Ge Z, Yang F, Goh JC, Ramakrishna S, Lee EH. Biomaterials and scaffolds for ligament tissue engineering. J. Biomed. Mater. Res.77A, 639–652 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.