190
Views
43
CrossRef citations to date
0
Altmetric
Review

Biological effects of dynamic shear stress in cardiovascular pathologies and devices

&
Pages 167-181 | Published online: 09 Jan 2014

References

  • Bodnar E. The Medtronic Parallel valve and the lessons learned. J. Heart Valve Dis.5(6), 572–573 (1996).
  • Antunes MJ, Colsen PR, Kinsley RH. Intermittent aortic regurgitation following aortic valve replacement with the Hall–Kaster prosthesis. J. Thorac. Cardiovasc. Surg.84(5), 751–754 (1982).
  • Omoto R, Matsumura M, Asano H et al. Doppler ultrasound examination of prosthetic function and ventricular blood flow after mitral valve replacement. Herz11(6), 346–350 (1986).
  • Yin W, Krukenkamp IB, Saltman AE et al. Thrombogenic performance of a St. Jude bileaflet mechanical heart valve in a sheep model. ASAIO J.52(1), 28–33 (2006).
  • Yin W, Gallocher S, Pinchuk L et al. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artif. Organs29(10), 826–831 (2005).
  • Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng.32(8), 1058–1066 (2004).
  • Bluestein D, Yin W, Affeld K, Jesty J. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis.13(3), 501–508 (2004).
  • Dumont K, Vierendeels J, van Nooten G, Verdonck P, Bluestein, D. Comparison of ATS Open Pivot Valve and St Jude Regent Valve using a CFD model based on fluid-structure interaction. J. Biomech. Eng.129(4) (2007).
  • Travis BR, Marzec UM, Ellis JT et al. The sensitivity of indicators of thrombosis initiation to a bileaflet prosthesis leakage stimulus. J. Heart Valve Dis.10(2), 228–238 (2001).
  • Simon HA, Dasi LP, Leo HL, Yoganathan AP. Spatio–temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage. Ann. Biomed. Eng.35(8), 1333–1346 (2007).
  • Leo HL, Simon HA, Dasi LP, Yoganathan AP. Effect of hinge gap width on the microflow structures in 27-mm bileaflet mechanical heart valves. J. Heart Valve Dis.15(6), 800–808 (2006).
  • Raz S, Einav S, Alemu Y, Bluestein D. DPIV prediction of flow induced platelet activation-comparison to numerical predictions. Ann. Biomed. Eng.35(4), 493–504 (2007).
  • Dintenfass L, Julian DG, Miller GE. Viscosity of blood in normal subjects and in patients suffering from coronary occlusion and arterial thrombosis. An in vitro study in the absence of anticoagulants, by means of a rotational cone-in-cone trolley viscometer. Am. Heart J.71(5), 587–600 (1966).
  • Evans A, Weaver JP, Walder DN. A viscometer for the study of blood. Biorheology4(4), 169–174 (1967).
  • Skovborg F, Nielsen AV, Schlichtkrull J. Blood viscosity and vascular flow rate. Blood-viscosity measured in a cone-plate viscometer and the flow rate in an isolated vascular bed. Scand. J. Clin. Lab. Invest.21(1), 83–88 (1968).
  • Larsson H, Odeberg H, Bohlin L. Studies of blood viscosity with a newly constructed rotational viscometer which operates via a desk top computer. Scand. J. Clin. Lab. Invest.43(6), 493–502 (1983).
  • McMillan DE, Utterback NG, Nasrinasrabadi M, Lee MM. An instrument to evaluate the time dependent flow properties of blood at moderate shear rates. Biorheology23(1), 63–74 (1986).
  • Paul R, Apel J, Klaus S et al. Shear stress related blood damage in laminar couette flow. Artif. Organs27(6), 517–529 (2003).
  • Cokelet GR, Brown JR, Codd SL, Seymour JD. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Biorheology42(5), 385–399 (2005).
  • Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology17(1–2), 17–24 (1980).
  • Reinhart WH, Hausler K, Schaller P et al. Rheological properties of blood as assessed with a newly designed oscillating viscometer. Clin. Hemorheol. Microcirc.18(1), 59–65 (1998).
  • Voisin P, Guimont C, Stoltz JF. Experimental investigation of the rheological activation of blood platelets. Biorheology22(5), 425–435 (1985).
  • Wang X, Liao FL, Stoltz JF. A new simple cone-plate viscometer for hemorheology. Clin. Hemorheol. Microcirc.19(1), 25–31 (1998).
  • Blackman BR, Barbee KA, Thibault LE. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng.28(4), 363–372 (2000).
  • Yeh C, Calvez AC, Eckstein EC. An estimated shape function for drift in a platelet-transport model. Biophys. J.67(3), 1252–1259 (1994).
  • Yeh C, Eckstein EC. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys. J.66(5), 1706–1716 (1994).
  • Hung TC, Hochmuth RM, Joist JH, Sutera SP. Shear-induced aggregation and lysis of platelets. Trans. Am. Soc. Artif. Intern. Organs22, 285–291 (1976).
  • Klaus S, Korfer S, Mottaghy K, Reul H, Glasmacher B. in vitro blood damage by high shear flow: human versus porcine blood. Int. J. Artif. Organs25(4), 306–312 (2002).
  • Taylor GI. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. (London)A223, 289–343 (1923).
  • Chandrasekhar S. The hydrodynamic stability of viscid flow between coaxial cylinders. Proc. Natl Acad. Sci. USA46(1), 141–143 (1960).
  • Czarny O, Lueptow RM. Time scales for transition in Taylor–Couette flow. Phys. Fluids19(5) 054103(2007).
  • Dutcher CS, Muller SJ. Explicit analytic formulas for Newtonian Taylor–Couette primary instabilities. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys.75(4 Pt 2), 047301 (2007).
  • Korfer S, Klaus S, Mottaghy K. Application of Taylor vortices in hemocompatibility investigations. Int. J. Artif. Organs26(4), 331–338 (2003).
  • Kim MC, Chung TJ, Choi CK. The onset of Taylor-like vortices in the flow induced by an impulsively started rotating cylinder. Theor. Comp. Fluid Dyn.18(2–4), 105–114 (2004).
  • Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. (Eds). Oxford University Press, NY, USA (1961).
  • Kim MC, Choi CK. The onset of instability in the flow induced by an impulsively started rotating cylinder. Chem. Eng. Sci.60(3), 599–608 (2005).
  • Diprima RC, Eagles PM, Ng BS. The effect of radius ratio on the stability of Couette-flow and Taylor vortex flow. Phys. Fluids27(10), 2403–2411 (1984).
  • Cole JA. Taylor-Vortex Instability and Annulus-Length Effects. J. Fluid Mech.75, 1–15 (1976).
  • Lim TT, Chew YT, Xiao Q. A new flow regime in a Taylor-Couette flow. Phys. Fluids10(12), 3233–3235 (1998).
  • Batten WM, Bressloff NW, Turnock SR. Numerical simulations of the evolution of Taylor cells from a growing boundary layer on the inner cylinder of a high radius ratio Taylor-Couette system. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066302 (2002).
  • Wu J, Antaki JF, Snyder TA et al. Design optimization of blood shearing instrument by computational fluid dynamics. Artif. Organs29(6), 482–489 (2005).
  • Mooney M, Ewart RH. The coincylindrical viscometer. Physics5, 350–354 (1934).
  • Wells RE Jr, Denton R, Merrill EW. Measurement of viscosity of biologic fluids by cone plate viscometer. J. Lab. Clin. Med.57, 646–656 (1961).
  • Williams AR, Escoffery CT, Gorst DW. The fragility of normal and abnormal erythrocytes in a controlled hydrodynamic shear field. Br. J. Haematol.37(3), 379–389 (1977).
  • Schwartz JA, Keagy BA, Johnson G Jr. Determination of whole blood apparent viscosity: experience with a new hemorheologic technique. J. Surg. Res.45(2), 238–247 (1988).
  • Giorgio TD, Hellums JD. A cone and plate viscometer for the continuous measurement of blood platelet activation. Biorheology25(4), 605–624 (1988).
  • Sutera SP, Nowak MD, Joist JH, Zeffren DJ, Bauman JE. A programmable, computer-controlled cone-plate viscometer for the application of pulsatile shear stress to platelet suspensions. Biorheology25(3), 449–459 (1988).
  • Blackman BR, Garcia-Cardena G, Gimbrone MA Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng.124(4), 397–407 (2002).
  • Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol.293(6), C1824–C1833 (2007).
  • Simmers MB, Pryor AW, Blackman BR. Arterial shear stress regulates endothelial cell-directed migration, polarity, and morphology in confluent monolayers. Am. J. Physiol. Heart Circ. Physiol.293(3), H1937–H1946 (2007).
  • Ohshima N, Onohara M, Sato M. Dynamics of platelet adhesion to artificial materials and cultured endothelial cells under shear flow. ASAIO Trans.35(3), 379–381 (1989).
  • Rhodes NP, Shortland AP, Rattray A, Williams DF. Platelet reactions to modified surfaces under dynamic conditions. J. Mater. Sci. Mater. Med.9(12), 767–772 (1998).
  • Peerschke EI, Silver RT, Weksler B et al. Ex vivo evaluation of erythrocytosis-enhanced platelet thrombus formation using the cone and plate(let) analyzer: effect of platelet antagonists. Br. J. Haematol.127(2), 195–203 (2004).
  • Shankaran H, Neelamegham S. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys. J.80(6), 2631–2648 (2001).
  • Shankaran H, Neelamegham S. Effect of secondary flow on biological experiments in the cone-plate viscometer: methods for estimating collision frequency, wall shear stress and inter-particle interactions in non-linear flow. Biorheology38(4), 275–304 (2001).
  • Einav S, Dewey CF, Hartenbaum H. Cone-and-plate apparatus – a compact system for studying well-characterized turbulent-flow fields. Exp. Fluids16(3–4), 196–202 (1994).
  • Barbee KA, Mundel T, Lal R, Davies PF. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol.268(4 Pt 2), H1765–H1772 (1995).
  • Barbee KA. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng.30(4), 472–482 (2002).
  • Cox DB. Radial flow in cone-plate viscometer. Nature193(4816), 670 (1962).
  • Sdougos HP, Bussolari SR, Dewey CF. Secondary Flow and Turbulence in a Cone-and-Plate Device. J. Fluid Mech.138, 379–404 (1984).
  • Fewell ME, Hellums JD. The secondary flow of Newtonian fluids in cone-and-plate viscometers. Trans. Soc. Rheol.21, 535–565 (1977).
  • Grad Y, Einav S. Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a cone and plate apparatus. Exp. Fluids28(4), 336–343 (2000).
  • Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am. J. Physiol.265(1 Pt 1), C289–C298 (1993).
  • Buschmann MH, Dieterich P, Adams NA, Schnittler HJ. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng.89(5), 493–502 (2005).
  • Nobili M, Sheriff JF, Morbiducci U, Redaelli A, Bluestein D. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. (In Press) (2008).
  • Chung CA, Tzou MR, Ho RW. Oscillatory flow in a cone-and-plate bioreactor. J. Biomech. Eng.127(4), 601–610 (2005).
  • Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys. J.12(3), 257–273 (1972).
  • Wolf C, Lederer K, Pfragner R et al. Biocompatibility of ultra-high molecular weight polyethylene (UHMW-PE) stabilized with α-tocopherol used for joint endoprostheses assessed in vitro. J. Mater. Sci. Mater. Med.18(6), 1247–1252 (2007).
  • Wolf C, Lederer K, Bergmeister H, Losert U, Bock P. Animal experiments with ultra-high molecular weight polyethylene (UHMW-PE) stabilised with α-tocopherol used for articulating surfaces in joint endoprostheses. J. Mater. Sci. Mater. Med.17(12), 1341–1347 (2006).
  • Klapperich C, Pruitt L, Komvopoulos K. Chemical and biological characteristics of low-temperature plasma treated ultra-high molecular weight polyethylene for biomedical applications. J. Mater. Sci. Mater. Med.12(6), 549–556 (2001).
  • Jesty J, Bluestein D. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem.272(1), 64–70 (1999).
  • Grigioni M, Daniele C, Morbiducci U et al. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs28(5), 467–475 (2004).
  • Grigioni M, Morbiducci U, D’Avenio G, Benedetto GD, Gaudio CD. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model Mechanobiol.4(4), 249–260 (2005).
  • Alemu Y, Bluestein D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs31(9), 677–688 (2007).
  • McKinney VZ, Rinker KD, Truskey GA. Normal and shear stresses influence the spatial distribution of intracellular adhesion molecule-1 expression in human umbilical vein endothelial cells exposed to sudden expansion flow. J. Biomech.39(5), 806–817 (2006).
  • Methe H, Balcells M, Alegret Mdel C et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am. J. Physiol. Heart Circ. Physiol.292(5), H2167–H2175 (2007).
  • Matsumoto Y, Kawai Y, Watanabe K et al. Fluid shear stress attenuates tumor necrosis factor-alpha-induced tissue factor expression in cultured human endothelial cells. Blood91(11), 4164–4172 (1998).
  • Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol.292(3), H1209–1224 (2007).
  • Grabowski EF, Lam FP. Endothelial cell function, including tissue factor expression, under flow conditions. Thromb. Haemost.74(1), 123–128 (1995).
  • Grabowski EF. Thrombolysis, flow, and vessel wall interactions. J. Vasc. Interv. Radiol.6(6 Pt 2 Su), 25S-29S (1995).
  • Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis5(3), 293–302 (1985).
  • Kaazempur-Mofrad MR, Isasi AG, Younis HF et al. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann. Biomed. Eng.32(7), 932–946 (2004).
  • Chen BP, Li YS, Zhao Y et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genomics7(1), 55–63 (2001).
  • Chien S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol.83(2), 131–151 (2003).
  • Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol.293(1), H645–653 (2007).
  • Mott RE, Helmke BP. Mapping the dynamics of shear stress induced structural changes in endothelial cells. Am. J. Physiol. Cell Physiol.293(5), C1616–C1626 (2007).
  • Yao Y, Rabodzey A, Forbes Dewey C Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol.293(2), H1023–H1030 (2007).
  • Wang W. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells. J. Biomech. Eng.129(3), 324–329 (2007).
  • Pahakis MY, Kosky JR, Dull RO, Tarbell JM. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun.355(1), 228–233 (2007).
  • Zhao S, Suciu A, Ziegler T et al. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol.15(10), 1781–1786 (1995).
  • Skalak R, Chien S.Handbook of Bioengineering. (Eds). McGraw-Hill, New York, NY, USA (1987).
  • Melder RJ, Yuan J, Munn LL, Jain RK. Erythrocytes enhance lymphocyte rolling and arrest in vivo. Microvasc.Res.,59(2), 316–322 (2000).
  • Munn LL, Melder RJ, Jain RK. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Biophys. J.71(1), 466–478 (1996).
  • Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood100(10), 3797–3803 (2002).
  • Joist JH, Bauman JE, Sutera SP. Platelet adhesion and aggregation in pulsatile shear flow: effects of red blood cells. Thromb. Res.92(6 Suppl. 2), S47–S52 (1998).
  • Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science207(4430), 541–543 (1980).
  • Alkhamis TM, Beissinger RL, Chediak JR. Red blood cell effect on platelet adhesion and aggregation in low-stress shear flow. Myth or fact? ASAIO Trans.34(3), 868–873 (1988).
  • Alkhamis TM, Beissinger RL, Chediak JR. Artificial surface effect on red blood cells and platelets in laminar shear flow. Blood75(7), 1568–1575 (1990).
  • Wurzinger LJ, Blasberg P, Schmid-Schonbein H. Towards a concept of thrombosis in accelerated flow: rheology, fluid dynamics, and biochemistry. Biorheology22(5), 437–450 (1985).
  • Sallam AM, Hwang NH. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology21(6), 783–797 (1984).
  • Zhao R, Antaki JF, Naik T et al. Microscopic investigation of erythrocyte deformation dynamics. Biorheology43(6), 747–765 (2006).
  • An X, Lecomte MC, Chasis JA, Mohandas N, Gratzer W. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J. Biol. Chem.277(35), 31796–31800 (2002).
  • Li J, Lykotrafitis G, Dao M, Suresh S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl Acad. Sci. USA104(12), 4937–4942 (2007).
  • Schmid-Schonbein H, Gaehtgens P, Hirsch H. On the shear rate dependence of red cell aggregation in vitro. J. Clin. Invest.47(6), 1447–1454 (1968).
  • McHedlishvili G. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Clin. Hemorheol. Microcirc.19(4), 315–325 (1998).
  • Jackson SP. The growing complexity of platelet aggregation. Blood109(12), 5087–5095 (2007).
  • Goldsmith HL, Yu SS, Marlow J. Fluid mechanical stress and the platelet. Thromb. Diath. Haemorrh.34(1), 32–41 (1975).
  • Brown CH 3rd, Leverett LB, Lewis CW, Alfrey C Jr, Hellums JD. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med.86(3), 462–471 (1975).
  • Feng S, Lu X, Resendiz JC, Kroll MH. Pathological shear stress directly regulates platelet αIIbβ3 signaling. Am. J. Physiol. Cell Physiol.291(6), C1346–C1354 (2006).
  • Konstantopoulos K, Wu KK, Udden MM et al. Flow cytometric studies of platelet responses to shear stress in whole blood. Biorheology32(1), 73–93 (1995).
  • Leytin V, Allen DJ, Mykhaylov S et al. Pathologic high shear stress induces apoptosis events in human platelets. Biochem. Biophys. Res. Commun.320(2), 303–310 (2004).
  • Pontiggia L, Steiner B, Ulrichts H et al. Platelet microparticle formation and thrombin generation under high shear are effectively suppressed by a monoclonal antibody against GPIba. Thromb. Haemost.96(6), 774–780 (2006).
  • Schulz-Heik K, Ramachandran J, Bluestein D, Jesty J. The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and Factor Va. Pathophysiol. Haemost. Thromb.34(6), 255–262 (2005).
  • Shah U, Ma AD. Tests of platelet function. Curr. Opin. Hematol.14(5), 432–437 (2007).
  • Hagberg IA, Lyberg T. Blood platelet activation evaluated by flow cytometry: optimised methods for clinical studies. Platelets11(3), 137–150 (2000).
  • Bluestein D. Research Approaches for Studying Flow Induced Thromboembolic Complications in Blood Recirculating Devices. Expert Rev. Med. Devices1(1), 65–80 (2004).
  • Bluestein D. Towards optimization of the thrombogenic potential of blood recirculating cardiovascular devices using modeling approaches. Expert Rev. Med. Devices3(3), 267–270 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.