57
Views
9
CrossRef citations to date
0
Altmetric
Review

Thyroid cancer and the immune system: a model for effective immune surveillance

&
Pages 353-366 | Published online: 10 Jan 2014

References

  • Cancer Incidence and Survival among Children and Adolescents. United States SEER Program 1975–1995. Ries LAG, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR (Eds). National Cancer Institute, SEER Program, NIH, Bethesda, MD, USA (1999).
  • Oertel JE, Klinck GH. Structural changes in the thyroid glands of healthy young men. Med. Ann.34, 75–77 (1965).
  • Bisi H, Fernandes VS, de Camargo RY, Koch L, Abdo AH, de Brito T. The prevalence of unsuspected thyroid pathology in 300 sequential autopsies, with special reference to the incidental carcinoma. Cancer64(9), 1888–1893 (1989).
  • Souza SL, Montalli Da Assumpcao LV, Ward LS. Impact of previous thyroid autoimmune diseases on prognosis of patients with well-differentiated thyroid cancer. Thyroid13(5), 491–495 (2003).
  • Welch Dinauer CA, Tuttle RM, Robie DK et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin. Endocrinol. (Oxford)49(5), 619–628 (1998).
  • McClellan DR, Francis GL. Thyroid cancer in children, pregnant women, and patients with Graves’ disease. Endocrinol. Metab. Clin. N. Am.25(1), 27–48 (1996).
  • Robbins RJ, Robbins AK. Recombinant human thyrotropin and thyroid cancer management. J. Clin. Endocrinol. Metab.88(5), 1933–1938 (2003).
  • Laroye GJ. How efficient is immunological surveillance against cancer and why does it fail? Lancet1(7866), 1097–1100 (1974).
  • Klein G, Klein E. Surveillance against tumors – is it mainly immunological? Immunol. Lett.100(1), 29–33 (2005).
  • Everson TC. Spontaneous regression of cancer. Prog. Clin. Cancer3, 79–95 (1967).
  • Penn I. The occurrence of malignant tumors in immunosuppressed states. Prog. Allergy37, 259–300 (1986).
  • Penn I. Halgrimson CG Starzl TE. De novo malignant tumors in organ transplant recipients. Transplant Proc.3(1), 773–778 (1971).
  • Schreiber H. Tumor Immunology. In: Fundamental Immunology. Paul WE (Ed.). Raven Press Ltd. New York, NY, USA 923–955 (1989).
  • Plappert UG, Stocker B, Fender H et al. Changes in the repair capacity of blood cells as a biomarker for chronic low-dose exposure to ionizing radiation. Environ. Mol. Mutagen30(2), 153–160 (1997).
  • Foss FM. Immunologic mechanisms of antitumor activity. Semin. Oncol.29(3 Suppl. 7), 5–11 (2002).
  • Prehn RT. The immune reaction as a stimulator of tumor growth. Science176(31), 170–171 (1972).
  • Prehn RT. Proceedings: immune involvement in oncogenesis. Proc. Natl Cancer Conf.7, 401–404 (1972).
  • Yamakawa M, Yamada K, Tsuge T et al. Protection of thyroid cancer cells by complement-regulatory factors. Cancer73(11), 2808–2817 (1994).
  • Gorelik E. Concomitant tumor immunity and the resistance to a second tumor challenge. Adv. Cancer Res.39, 71–120 (1983).
  • Brabant G, Hoang-Vu C, Behrends J et al. Regulation of the cell-cell adhesion protein, E-cadherin, in dog and human thyrocytes in vitro.Endocrinology136(7), 3113–3119 (1995).
  • Potter E, Schoenermark M, Bock O et al. Cell adhesion receptors and gap junctions in normal and neoplastic transformed thyrocytes. Exp. Clin. Endocrinol. Diabetes104(Suppl. 4), 24–28 (1996).
  • Miller A, Kraiem Z, Sobel E, Lider O, Lahat N. Modulation of human leukocyte antigen and intracellular adhesion molecule-1 surface expression in malignant and nonmalignant human thyroid cells by cytokines in the context of extracellular matrix. Thyroid10(11), 945–950 (2000).
  • Castellone MD, Guarino V, De Falco V et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene23(35), 5958–5967 (2004).
  • Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA Arch. Surg.70(2), 291–297 (1955).
  • Kashima K, Yokoyama S, Noguchi S et al. Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma. Thyroid8(3), 197–202 (1998).
  • Loh KC, Greenspan FS, Dong F et al. Influence of lymphocytic thyroiditis on the prognostic outcome of patients with papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.84(2), 458–463 (1999).
  • Memon A, Berrington de Gonzalez A, Luqmani Y et al. Family history of benign thyroid disease and cancer and risk of thyroid cancer. Eur. J. Cancer40(5), 754–760 (2004).
  • Kebebew E, Treseler PA, Ituarte PH, Clark OH. Coexisting chronic lymphocytic thyroiditis and papillary thyroid cancer revisited. World J. Surg.25(5), 632–637 (2001).
  • Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. Int. J. Surg. Pathol.10(2), 141–146 (2002).
  • Holm LE, Blomgren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N. Engl. J. Med.312(10), 601–604 (1985).
  • Okayasu I, Fujiwara M, Hara Y, Tanaka Y, Rose NR. Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma. A study of surgical cases among Japanese, and white and African Americans. Cancer76(11), 2312–2318 (1995).
  • Russell JP, Engiles JB, Rothstein JL. Proinflammatory mediators and genetic background in oncogene mediated tumor progression. J. Immunol.172(7), 4059–4067 (2004).
  • Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology41(4), 357–362 (2002).
  • Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab.85(3), 1170–1175 (2000).
  • Nikiforov Y. Spatial positioning of RET and H4 following radiation exposure leads to tumor development. Sci. World J.1, 186–187 (2001).
  • Wirtschafter A, Schmidt R, Rosen D et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope107(1), 95–100 (1997).
  • Mechler C, Bounacer A, Suarez H et al. Papillary thyroid carcinoma: 6 cases from 2 families with associated lymphocytic thyroiditis harbouring RET/PTC rearrangements. Br. J. Cancer85(12), 1831–1837 (2001).
  • Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Francis GL. Extensive surgery improves recurrence-free survival for children and young patients with class I papillary thyroid carcinoma. J. Pediatr. Surg,34(12), 1799–1804 (1999).
  • DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.71(2), 414–424 (1990).
  • Borson-Chazot F, Causeret S, Lifante JC et al. Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J. Surg.28(11), 1088–1092 (2004).
  • Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin. Endocrinol. Metab.83(11), 4116–4122 (1998).
  • Russell JP, Shinohara S, Melillo RM, Castellone MD, Santoro M, Rothstein JL. Tyrosine kinase oncoprotein, RET/PTC3, induces the secretion of myeloid growth and chemotactic factors. Oncogene22(29), 4569–4577 (2003).
  • Jhiang SM, Cho JY, Furminger TL et al. Thyroid carcinomas in RET/PTC transgenic mice. Recent Results Cancer Res.154, 265–270 (1998).
  • Powell DJ Jr, Eisenlohr LC, Rothstein JL. A thyroid tumor-specific antigen formed by the fusion of two self proteins. J. Immunol.170(2), 861–869 (2003).
  • Shinohara S, Rothstein JL. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene23(45), 7571–7579 (2004).
  • Behar R, Argenini M, Tain-Cheng W. Graves’ disease and thyroid cancer. Surgery100(6), 1121–1127 (1986).
  • Pemberton J, Black B. The association of carcinoma of the thyroid and exopthalmic goiter. Surg. Clin. N. Am.28, 935–952 (1948).
  • Belfiore A, Garofalo MR, Giuffrida D et al. Increased aggressiveness of thyroid cancer in patients with Graves’ disease. J. Clin. Endocrinol. Metab.70(4), 830–835 (1990).
  • Hales IB, McElduff A, Crummer P et al. Does Graves’ disease or thyrotoxicosis affect the prognosis of thyroid cancer. J. Clin. Endocrinol. Metab.75(3), 886–889 (1992).
  • Ozaki O, Ito K, Kobayashi K et al. Thyroid carcinoma in Graves’ disease. World J. Surg.14(3), 437–440 (1990).
  • Pacini F, Elisei R, Di Coscio GC et al. Thyroid carcinoma in thyrotoxic patients treated by surgery. J. Endocrinol. Invest.11(2), 107–112 (1988).
  • Clark OH, Castner BJ. Thyrotropin "receptors" in normal and neoplastic human thyroid tissue. Surgery85(6), 624–632 (1979).
  • Rivas M, Santisteban P. TSH-activated signaling pathways in thyroid tumorigenesis. Mol. Cell Endocrinol.213(1), 31–45 (2003).
  • Pacini F, Sridama V, Pressendo J, DeGroot LJ, Medof ME. Binding of immunoglobulin-G from patients with thyroid autoimmune disease to normal T lymphocytes. Clin. Endocrinol. (Oxford)19(1), 29–37 (1983).
  • Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J. Immunol.165(11), 6606–6611 (2000).
  • Vella V, Mineo R, Frasca F et al. Interleukin-4 stimulates papillary thyroid cancer cell survival: implications in patients with thyroid cancer and concomitant Graves’ disease. J. Clin. Endocrinol. Metab.89(6), 2880–2889 (2004).
  • Heuer M, Aust G, Ode-Hakim S, Scherbaum WA. Different cytokine mRNA profiles in Graves’ disease, Hashimoto’s thyroiditis, and nonautoimmune thyroid disorders determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Thyroid6(2), 97–106 (1996).
  • Roura-Mir C, Catalfamo M, Sospedra M, Alcalde L, Pujol-Borrell R, Jaraquemada D. Single-cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in Hashimoto’s and Graves’ disease. Eur. J. Immunol.27(12), 3290–3302 (1997).
  • Gooch JL, Lee AV, Yee D. Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res.58(18), 4199–4205 (1998).
  • Toi M, Bicknell R, Harris AL. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res.52(2), 275–279 (1992).
  • Juhasz F, Boros P, Szegedi G et al. Immunogenetic and immunologic studies of differentiated thyroid cancer. Cancer63(7), 1318–1326 (1989).
  • Matsubayashi S, Kawai K, Matsumoto Y et al. The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland. J. Clin. Endocrinol. Metab.80(12), 3421–3424 (1995).
  • Powers PA, Dinauer CA, Tuttle RM, Francis GL. Treatment of recurrent papillary thyroid carcinoma in children and adolescents. J. Pediatr. Endocrinol. Metab.16, 1033–1040 (2003).
  • Powers PA, Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Francis GL. Tumor size and extent of disease at diagnosis predict the response to initial therapy for papillary thyroid carcinoma in children and adolescents. J. Pediatr. Endocrinol. Metab.16(5), 693–703 (2003).
  • La Quaglia MP, Black T, Holcomb GW 3rd et al. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J. Pediatr. Surg.35(6), 955–960 (2000).
  • Gupta S, Patel A, Folstad A et al. Infiltration of differentiated thyroid carcinoma by proliferating lymphocytes is associated with improved disease-free survival for children and young adults. J. Clin. Endocrinol. Metab.86(3), 1346–1354 (2001).
  • Van Savell H Jr, Hughes SM, Bower C, Parham DM. Lymphocytic infiltration in pediatric thyroid carcinomas. Pediatr. Dev. Pathol.7(5), 487–492 (2004).
  • Fiumara A, Belfiore A, Russo G et al. In situ evidence of neoplastic cell phagocytosis by macrophages in papillary thyroid cancer. J. Clin. Endocrinol. Metab.82(5), 1615–1620 (1997).
  • Bagnasco M, Venuti D, Paolieri F, Torre G, Ferrini S, Canonica GW. Phenotypic and functional analysis at the clonal level of infiltrating T lymphocytes in papillary carcinoma of the thyroid: prevalence of cytolytic T cells with natural killer-like or lymphokine-activated killer activity. J. Clin. Endocrinol. Metab.69(4), 832–836 (1989).
  • Modi J, Patel A, Terrell R, Tuttle RM, Francis GL. Papillary thyroid carcinoma from children and adolescents contain a mixture of lymphocytes. J. Clin. Endocrinol. Metab.88, 4418–4425 (2003).
  • Kornfehl J, Wilfing A, Hermann M. Immunohistochemical studies of mononuclear cellular infiltrates of papillary, follicular and anaplastic thyroid cancers. Laryngorhinootologie73(4), 183–188 (1994).
  • Yagi Y, Sato E, Yagi S. Population of K-lymphocytes in various kinds of thyroid disease. Endocrinology (Japan)30(1), 113–119 (1983).
  • Aoki N, Pinnamaneni KM, DeGroot LJ. Studies on suppressor cell function in thyroid diseases. J. Clin. Endocrinol. Metab.48(5), 803–810 (1979).
  • Aanderud S, Matre R, Varhaug JE. Immunological characterization of mononuclear cells in thyroid gland and blood in Graves’ disease, multinodular goiter and papillary carcinoma. Int. Arch. Allergy Appl. Immunol.69(2), 137–142 (1982).
  • Sack J, Baker JR Jr, Weetman AP, Wartofsky L, Burman KD. Thyrocyte specific killer cell activity is decreased in patients with thyroid carcinoma. Cancer59(11), 1914–1917 (1987).
  • Salmaso C, Olive D, Pesce G, Bagnasco M. Costimulatory molecules and autoimmune thyroid diseases. Autoimmunity35(3), 159–117 (2002).
  • Shah R, Banks K, Patel A et al. Intense expression of the b7–2 antigen presentation coactivator is an unfavorable prognostic indicator for differentiated thyroid carcinoma of children and adolescents. J. Clin. Endocrinol. Metab.87(9), 4391–4391 (2002).
  • Costello A, Rey-Hipolito C, Patel A et al. Thyroid cancers express CD-40 and CD-40 ligand: cancers that express CD-40 ligand may have a greater risk of recurrence in young patients. Thyroid15(2), 105–113 (2005).
  • Tolosa E, Roura C, Catalfamo M et al. of intercellular adhesion molecule-1 in thyroid follicular cells in autoimmune, non-autoimmune and neoplastic diseases of the thyroid gland: discordance with HLA. J. Autoimmun.5(1), 107–118 (1992).
  • Saji M, Moriarty J, Ban T, Singer DS, Kohn LD. Major histocompatibility complex class I gene expression in rat thyroid cells is regulated by hormones, methimazole, and iodide as well as interferon. J. Clin. Endocrinol. Metab.75(3), 871–878 (1992).
  • Gydee H, O’Neill JT, Patel A, Bauer AJ, Tuttle RM, Francis GL. Differentiated thyroid carcinomas from children and adolescents express insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1-R). Cancers with the most intense IGF-1-R expression may be more aggressive. Pediatr. Res.55(3), 1–7 (2004).
  • Kayser L, Broholm H, Francis D et al. Immunocytochemical localisation of tumor necrosis factor α in thyroid tissues from patients with neoplastic or autoimmune thyroid disorders. Autoimmunity23(2), 91–97 (1996).
  • Kayser L, Broholm H, Francis D et al. Immunocytochemical localisation of interleukin-1 α and interleukin- 6 in thyroid tissues from patients with neoplastic or autoimmune thyroid disorders. Autoimmunity20(2), 75–82 (1995).
  • Aust G, Steinert M, Kiessling S, Kamprad M, Simchen C. Reduced expression of stromal-derived factor 1 in autonomous thyroid adenomas and its regulation in thyroid-derived cells. J. Clin. Endocrinol. Metab.86(7), 3368–3376 (2001).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410(6824), 50–56 (2001).
  • Aoki N, DeGroot J. Lymphocyte blastogenic response to human thyroglobulin in Graves’ disease, Hashimoto’s thyroiditis, and metastatic thyroid cancer. Clin. Exp. Immunol.38(3), 523–530 (1979).
  • Amino N, Pysher T, Cohen EP, Degroot LJ. Immunologic aspects of human thyroid cancer. Humoral and cell-mediated immunity, and a trial of immunotherapy. Cancer36(3), 963–973 (1975).
  • Schott M, Scherbaum WA, Seissler J. Dendritic cell-based immunotherapy in thyroid malignancies. Curr. Drug Targets Immune Endocrinol. Metab. Dis.4(3), 245–251 (2004).
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med.137(5), 1142–1162 (1973).
  • Pinzon-Charry A, Maxwell T, Lopez JA. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol. Cell Biol.83(5), 451–461 (2005).
  • Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev.207, 166–183 (2005).
  • Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nature Rev. Immunol.2(12), 957–964 (2002).
  • Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. What is a natural killer cell? Nature Immunol.3(1), 6–8 (2002).
  • Marcenaro E, Ferranti B, Moretta A. NK-DC interaction: on the usefulness of auto-aggression. Autoimmun. Rev.4(8), 520–525 (2005).
  • Wilders-Truschnig MM, Kabel PJ, Drexhage HA et al. Intrathyroidal dendritic cells, epitheloid cells, and giant cells in iodine deficient goiter. Am. J. Pathol.135(1), 219–225 (1989).
  • Kabel PJ, Voorbij HA, De Haan M, van der Gaag RD, Drexhage HA. Intrathyroidal dendritic cells. J. Clin. Endocrinol. Metab.66(1), 199–207 (1988).
  • Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Ann Rev. Immunol.12, 593–633 (1994).
  • Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA. Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur. J. Immunol.28(12), 4114–4122 (1998).
  • Scarpino S, D'Alena FC, Di Napoli A, Ballarini F, Prat M, Ruco LP. Papillary carcinoma of the thyroid: evidence for a role for hepatocyte growth factor (HGF) in promoting tumour angiogenesis. J. Pathol.199(2), 243–250 (2003).
  • Yamakawa M, Yamada K, Orui H et al. Immunohistochemical analysis of dendritic/Langerhans cells in thyroid carcinomas. Anal. Cell Pathol.8(4), 331–343 (1995).
  • Tsuge K, Takeda H, Kawada S, Maeda K, Yamakawa M. Characterization of dendritic cells in differentiated thyroid cancer. J. Pathol.205(5), 565–576 (2005).
  • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol.172(2), 989–999 (2004).
  • Straight AM, Oakley K, Moores R et al. Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes. Cancer Chemother. Pharmacol.57(1), 7–14 (2006).
  • Hiromatsu Y, Hoshino T, Yagita H et al. Functional Fas ligand expression in thyrocytes from patients with Graves’ disease. J. Clin. Endocrinol. Metab.84(8), 2896–2902 (1999).
  • Paolieri F, Salmaso C, Battifora M et al. Possible pathogenetic relevance of interleukin-1 β in "destructive" organ-specific autoimmune disease (Hashimoto’s thyroiditis). Ann. NY Acad. Sci.876, 221–228 (1999).
  • Ain KB, Egorin MJ, DeSimone PA. Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative Anaplastic Thyroid Cancer Health Intervention Trials (CATCHIT) Group. Thyroid10(7), 587–594 (2000).
  • Ain KB, Tofiq S, Taylor KD. Antineoplastic activity of taxol against human anaplastic thyroid carcinoma cell lines in vitro and in vivo. J. Clin. Endocrinol. Metab.81(10), 3650–3653 (1996).
  • Stassi G, Todaro M, Zerilli M et al. Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res.63(20), 6784–6790 (2003).
  • Mitsiades N, Poulaki V, Mitsiades CS, Koutras DA, Chrousos GP. Apoptosis induced by FasL and TRAIL/Apo2L in the pathogenesis of thyroid diseases. Trends Endocrinol. Metab.12(9), 384–390 (2001).
  • Mitsiades N, Poulaki V, Tseleni-Balafouta S, Koutras DA, Stamenkovic I. Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive tumor necrossis factor-related apoptosis-inducing ligand. Cancer Res.60(15), 4122–4129 (2000).
  • Mandal M, Kim S, Younes MN et al. The Akt inhibitor KP372–1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br. J. Cancer92(10), 1899–1905 (2005).
  • Ciampolillo A, De Tullio C, Giorgino F. The IGF-I/IGF-I receptor pathway: implications in the pathophysiology of thyroid cancer. Curr. Med. Chem.12(24), 2881–2891 (2005).
  • Chieffi P, Picascia A, Stanzione R, Villone G, Tramontano D. Endogenous insulin-like growth factors regulate the proliferation of TSH-independent mutants derived from FRTL5 cells. Biochimie81(4), 367–371 (1999).
  • Veneziani BM, Di Marino C, Salvatore P et al. Transfected insulin-like growth factor II modulates the mitogenic response of rat thyrocytes in culture. Mol. Cell Endocrinol.86(1–2), 11–20 (1992).
  • Bechtner G, Potscher C, Gartner R. Role of autocrine and paracrine factors in thyroid follicle growth. Thyroidology4(1), 1–5 (1992).
  • Tanaka Y, Kubota K, Sasaki N, Takaku F, Uchimura H. Growth stimulating activity secreted by human anaplastic thyroid carcinoma cells. Endocrinology (Japan)38(4), 413–420 (1991).
  • Yashiro T, Tsushima T, Murakami H et al. Insulin-like growth factor-II (IGF-II)/mannose-6-phosphate receptors are increased in primary human thyroid neoplasms. Eur. J. Cancer27(6), 699–703 (1991).
  • Maciel RM, Moses AC, Villone G, Tramontano D, Ingbar SH. Demonstration of the production and physiological role of insulin-like growth factor II in rat thyroid follicular cells in culture. J. Clin. Invest.82(5), 1546–1553 (1988).
  • Maiorano E, Ciampolillo A, Viale G et al. Insulin-like growth factor 1 expression in thyroid tumors. Appl. Immunohistochem. Mol. Morphol.8(2), 110–119 (2000).
  • Ariga M, Nedachi T, Akahori M et al. Signalling pathways of insulin-like growth factor-I that are augmented by cAMP in FRTL-5 cells. Biochem. J.348(Pt 2), 409–416 (2000).
  • Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R. Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie81(4), 403–407 (1999).
  • Fonseca E, Soares P, Rossi S et al. Prognostic factors in thyroid carcinomas. Verh. Dtsch. Ges. Pathol.81, 82–96 (1997).
  • Ortiz L, Zannini M, Di Lauro R, Santisteban P. Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factor I. J. Biol. Chem.272(37), 23334–23339 (1997).
  • Eggo MC, Sheppard MC. Autocrine growth factors produced in the thyroid. Mol. Cell Endocrinol.100(1–2), 97–102 (1994)
  • Santisteban P, Acebron A, Polycarpou-Schwarz M, Di Lauro R. Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol. Endocrinol.6(8), 1310–1317 (1992).
  • Vannelli GB, Barni T, Modigliani U et al. Insulin-like growth factor-I receptors in nonfunctioning thyroid nodules. J. Clin. Endocrinol. Metab.71(5), 1175–1182 (1990).
  • Condorelli G, Formisano P, Villone G, Smith RJ, Beguinot F. Insulin and insulin-like growth factor I (IGF I) stimulate phosphorylation of a Mr 175,000 cytoskeleton-associated protein in intact FRTL5 cells. J. Biol. Chem.264(21), 12633–12638 (1989).
  • Basolo F, Fiore L, Fusco A et al. Potentiation of the malignant phenotype of the undifferentiated ARO thyroid cell line by insertion of the bcl-2 gene. Int. J. Cancer81(6), 956–962 (1999).
  • Bachrach LK, Nanto-Salonen K, Tapanainen P, Rosenfeld RG, Gargosky SE. Insulin-like growth factor binding protein production in human follicular thyroid carcinoma cells. Growth Regul.5(2), 109–118 (1995).
  • Vella V, Pandini G, Sciacca L et al. A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin. Endocrinol. Metab.87(1), 245–254 (2002).
  • Vella V, Sciacca L, Pandini G et al. The IGF system in thyroid cancer: new concepts. Mol. Pathol.54(3), 121–124 (2001).
  • Frasca F, Pandini G, Scalia P et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells. Mol. Cell Biol.19(5), 3278–3288 (1999).
  • Poulaki V, Mitsiades CS, Kotoula V et al. Regulation of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in thyroid carcinoma cells. Am. J. Pathol.161(2), 643–654 (2002).
  • Mitsiades CS, Poulaki V, Mitsiades N. The role of apoptosis-inducing receptors of the tumor necrosis factor family in thyroid cancer. J. Endocrinol.178(2), 205–216 (2003).
  • Puxeddu E, Knauf JA, Sartor MA et al. RET/PTC-induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response. Endocrinol. Relat. Cancer12(2), 319–334 (2005).
  • Buckwalter TL, Venkateswaran A, Lavender M et al. The roles of phosphotyrosines-294, -404, and -451 in RET/PTC1-induced thyroid tumor formation. Oncogene21(53), 8166–8172 (2002).
  • Starenki DV, Namba H, Saenko VA et al. Induction of thyroid cancer cell apoptosis by a novel nuclear factor κB inhibitor, dehydroxymethylepoxyquinomicin. Clin. Cancer Res.10(20), 6821–6829 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.