25
Views
1
CrossRef citations to date
0
Altmetric
Review

Effects of perinatal overfeeding on mechanisms controlling food intake and body weight homeostasis

, , , &
Pages 651-659 | Published online: 10 Jan 2014

References

  • Friedman JM. A war on obesity, not the obese. Science299(5608), 856–858 (2003).
  • Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116(2), 337–350 (2004).
  • Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia35(7), 595–601 (1992).
  • Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br. Med. Bull.60, 5–20 (2001).
  • Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp. Clin. Endocrinol.99(3), 154–158 (1992).
  • Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature427(6973), 411–412 (2004).
  • McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev.85(2), 571–633 (2005).
  • Plagemann A. Perinatal nutrition and hormone-dependent programming of food intake. Horm. Res.65(Suppl 3), 83–89 (2006).
  • Lucas A. Programming by early nutrition in man. Ciba Found.Symp.156, 38–50 (1991).
  • McCance RB. Food growth and time. Lancet2, 271–272 (1962).
  • López M, Seoane LM, Tovar S et al. A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat. Diabetologia48(1), 140–148 (2005).
  • López M, Tovar S, Vázquez MJ et al. Perinatal overfeeding in rats results in increased levels of plasma leptin but unchanged cerebrospinal leptin in adulthood. Int. J. Obes. Relat. Metab. Disord. (2006)(In Press).
  • Lucas A. Programming by early nutrition: an experimental approach. J. Nutr.128(2 Suppl.), 401S–406S (1998).
  • Plagemann A, Harder T, Rake A et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res.836(1–2), 146–155 (1999).
  • Plagemann A, Harder T, Rake A et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J. Neuroendocrinol.11(7), 541–546 (1999).
  • Davidowa H, Li Y, Plagemann A. Hypothalamic ventromedial and arcuate neurons of normal and postnatally overnourished rats differ in their responses to melanin-concentrating hormone. Regul. Pept.108(2–3), 103–111 (2002).
  • Kalra SP, Dube MG, Pu S et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev.20(1), 68–100 (1999).
  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature404(6778), 661–671 (2000).
  • Meister B. Control of food intake via leptin receptors in the hypothalamus. Vitam. Horm.59, 265–304 (2000).
  • Boullu-Ciocca S, Paulmyer-Lacroix O, Fina F et al. Expression of the mRNAs coding for the glucocorticoid receptor isoforms in obesity. Obes. Res.11(8), 925–929 (2003).
  • Young JB. Effects of litter size on sympathetic activity in young adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.282(4), R1113–R1121 (2002).
  • Meaney MJ, Diorio J, Francis D et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci.18(1–2), 49–72 (1996).
  • Seckl JR, Meaney MJ. Glucocorticoid programming. Ann. NY Acad. Sci.1032, 63–84 (2004).
  • Angelbeck JH, DuBrul EF. The effect of neonatal testosterone on specific male and female patterns of phosphorylated cytosolic proteins in the rat preoptic-hypothalamus, cortex and amygdala. Brain Res.264(2), 277–283 (1983).
  • Garcia-Segura LM, Baetens D, Naftolin F. Sex differences and maturational changes in arcuate nucleus neuronal plasma membrane organization. Brain Res.351(1), 146–149 (1985).
  • Garcia-Segura LM, Baetens D, Naftolin F. Synaptic remodelling in arcuate nucleus after injection of estradiol valerate in adult female rats. Brain Res.366(1–2), 131–136 (1986).
  • Naftolin F, Mor G, Horvath TL et al. Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology137(12), 5576–5580 (1996).
  • Horvath TL, Diano S. Opinion: the floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci.5(8), 662–667 (2004).
  • Plagemann A, Rake A, Harder T et al. Reduction of cholecystokinin-8S-neurons in the paraventricular hypothalamic nucleus of neonatally overfed weanling rats. Neurosci. Lett.258(1), 13–16 (1998).
  • Plagemann A, Harder T, Rake A et al. Increased number of galanin-neurons in the paraventricular hypothalamic nucleus of neonatally overfed weanling rats. Brain Res.818(1), 160–163 (1999).
  • Plagemann A, Rittel F, Waas T, Harder T, Rohde W. Cholecystokinin-8S levels in discrete hypothalamic nuclei of weanling rats exposed to maternal protein malnutrition. Regul. Pept.85(2–3), 109–113 (1999).
  • Plagemann A, Harder T, Rake A et al. Hypothalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. J. Nutr.130(10), 2582–2589 (2000).
  • Plagemann A, Waas T, Harder T et al. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides34(1), 1–6 (2000).
  • Plagemann A, Harder T, Melchior K et al. Elevation of hypothalamic neuropeptide Y neurons in adult offspring of diabetic mother rats. Neuroreport10(15), 3211–3216 (1999).
  • Heidel E, Plagemann A, Davidowa H. Increased response to NPY of hypothalamic VMN neurons in postnatally overfed juvenile rats. Neuroreport10(9), 1827–1831 (1999).
  • Davidowa H, Li Y, Plagemann A. Differential response to NPY of PVH and dopamine-responsive VMH neurons in overweight rats. Neuroreport13(12), 1523–1527 (2002).
  • Li Y, Plagemann A, Davidowa H. Increased inhibition by agouti-related peptide of ventromedial hypothalamic neurons in rats overweight due to early postnatal overfeeding. Neurosci. Lett.330(1), 33–36 (2002).
  • Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur. J. Neurosci.18(3), 613–621 (2003).
  • Kozak R, Richy S, Beck B. Persistent alterations in neuropeptide Y release in the paraventricular nucleus of rats subjected to dietary manipulation during early life. Eur. J. Neurosci.21(10), 2887–2892 (2005).
  • Davidowa H, Heidel E, Plagemann A. Differential involvement of dopamine D1 and D2 receptors and inhibition by dopamine of hypothalamic VMN neurons in early postnatally overfed juvenile rats. Nutr. Neurosci.5(1), 27–36 (2002).
  • Davidowa H, Li Y, Plagemann A. Altered neuronal responses to feeding-relevant peptides as sign of developmental plasticity in the hypothalamic regulatory system of body weight. Zh. Vyssh. Nerv. Deiat. Im IP Pavlova53(5), 663–670 (2003).
  • Cowley MA, Smart JL, Rubinstein M et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature411(6836), 480–484 (2001).
  • Boullu-Ciocca S, Dutour A, Guillaume V et al. Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: its relationship with the metabolic syndrome. Diabetes54(1), 197–203 (2005).
  • Pinto S, Roseberry AG, Liu H et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science304(5667), 110–115 (2004).
  • Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science304(5667), 108–110 (2004).
  • Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev.13(3), 387–414 (1992).
  • Nataf V, Monier S. Effect of insulin and insulin-like growth factor I on the expression of the catecholaminergic phenotype by neural crest cells. Brain Res. Dev. Brain Res.69(1), 59–66 (1992).
  • Woods SC, Seeley RJ, Baskin DG, Schwartz MW. Insulin and the blood-brain barrier. Curr. Pharm. Des9(10), 795–800 (2003).
  • Plagemann A, Harder T, Rake A et al. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int. J. Dev. Neurosci.17(1), 37–44 (1999).
  • Wang J, Leibowitz KL. Central insulin inhibits hypothalamic galanin and neuropeptide Y gene expression and peptide release in intact rats. Brain Res.777(1–2), 231–236 (1997).
  • Schwartz MW, Sipols AJ, Marks JL et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology130(6), 3608–3616 (1992).
  • Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm. Metab. Res.26(5), 213–221 (1994).
  • Davidowa H, Plagemann A. Inhibition by insulin of hypothalamic VMH neurons in rats overweight due to postnatal overfeeding. Neuroreport12, 3201–3204 (2001).
  • Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature372(6505), 425–432 (1994).
  • Casanueva FF, Dieguez C. Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol.20(4), 317–363 (1999).
  • Ahima RS, Flier JS. Leptin. Annu. Rev. Physiol.62, 413–437 (2000).
  • Schmidt I, Fritz A, Scholch C et al. The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int. J. Obes. Relat. Metab. Disord.8, 1168–1174 (2001).
  • Schmidt I, Schoelch C, Ziska T et al. Interaction of genetic and environmental programming of the leptin system and of obesity disposition. Physiol. Genomics3(2), 113–120 (2000).
  • Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport11(12), 2795–2798 (2000).
  • Davidowa H, Plagemann A. Different responses of ventromedial hypothalamic neurons to leptin in normal and early postnatal overfed rats. Neurosci. Lett.293, 21–24 (2000).
  • García MC, López M, Gualillo O et al. Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB J.17(11), 1392–1400 (2003).
  • Seeber RM, Smith JT, Waddell BJ. Plasma leptin-binding activity and hypothalamic leptin receptor expression during pregnancy and lactation in the rat. Biol. Reprod.66(6), 1762–1767 (2002).
  • Van Heek M, Compton DS, France CF et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest.99(3), 385–390 (1997).
  • Burguera B, Couce ME, Curran GL et al. Obesity is associated with a decreased leptin transport across the blood–brain barrier in rats. Diabetes49(7), 1219–1223 (2000).
  • Furuhata Y, Kagaya R, Hirabayashi K et al. Development of obesity in transgenic rats with low circulating growth hormone levels: involvement of leptin resistance. Eur. J. Endocrinol.143(4), 535–541 (2000).
  • Banks WA, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. Am. J. Physiol. Endocrinol. Metab.285(1), E10–E15 (2003).
  • Tronche F, Kellendonk C, Reichardt HM, Schutz G. Genetic dissection of glucocorticoid receptor function in mice. Curr. Opin. Genet. Dev.8, 532–538 (1998).
  • Freedman MR, Horwitz BA, Stern JS. Effect of adrenalectomy and glucocorticoid replacement on development of obesity. Am. J. Physiol.250(4 Pt 2), R595–R607 (1986).
  • Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jeanrenaud F, Jeanrenaud B. Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes46(4), 717–719 (1997).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science294(5549), 2166–2170 (2001).
  • Velkoska E, Cole TJ, Morris MJ. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am. J. Physiol. Endocrinol. Metab.288(6), E1236–E1243 (2005).
  • Kojima M, Hosoda H, Date Y et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature402(6762), 656–660 (1999).
  • Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature407(6806), 908–913 (2000).
  • Seoane LM, López M, Tovar S et al. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothalamus. Endocrinology144(2), 544–551 (2003).
  • Nogueiras R, Tovar S, Mitchell SE et al. Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes53(10), 2552–2558 (2004).
  • Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell. Biol.23(22), 7973–7981 (2003).
  • Wortley KE, Del Rincon JP, Murray JD et al. Absence of ghrelin protects against early-onset obesity. J. Clin. Invest.115(12), 3573–3578 (2005).
  • Zigman JM, Nakano Y, Coppari R et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest.115(12), 3564–3572 (2005).
  • Grove KL, Cowley MA. Is ghrelin a signal for the development of metabolic systems? J. Clin. Invest.115(12), 3393–3397 (2005).
  • Davidowa H, Ziska T, Plagemann A. Arcuate neurons of overweight rats differ in their responses to amylin from controls. Neuroreport15(18), 2801–2805 (2004).
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol. Rev.85(4), 1131–1158 (2005).
  • Batterham RL, Cowley MA, Small CJ et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature418(6898), 650–654 (2002).
  • Challis BG, Pinnock SB, Coll AP et al. Acute effects of PYY3–36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem. Biophys. Res. Commun.311(4), 915–919 (2003).
  • Tschop M, Castaneda TR, Joost HG et al. Physiology: does gut hormone PYY3–36 decrease food intake in rodents? Nature430(6996), 1 (2004).
  • Coll AP, Challis BG, O’Rahilly S. Peptide YY3–36 and satiety: clarity or confusion? Endocrinology145(6), 2582–2584 (2004).
  • Halatchev IG, Cone RD. Peripheral administration of PYY3–36 produces conditioned taste aversion in mice. Cell Metab.1(3), 159–168 (2005).
  • Broberger C, Landry M, Wong H, Walsh JN, Hokfelt T. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology66(6), 393–408 (1997).
  • Hales CN, Barker DJ, Clark PM et al. Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J.303(6809), 1019–1022 (1991).
  • Ozanne SE, Hales CN. Early programming of glucose-insulin metabolism. Trends Endocrinol. Metab.13(9), 368–373 (2002).
  • Susser M, Stein Z. Timing in prenatal nutrition: a reprise of the Dutch Famine Study. Nutr. Rev.52(3), 84–94 (1994).
  • Roseboom TJ, van der Meulen JH, Ravelli AC et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol. Cell. Endocrinol.185(1–2), 93–98 (2001).
  • Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics111(3), e221-e226 (2003).
  • Jaquet D, Leger J, Tabone MD, Czernichow P, Levy-Marchal C. High serum leptin concentrations during catch-up growth of children born with intrauterine growth retardation. J. Clin. Endocrinol. Metab.84(6), 1949–1953 (1999).
  • Phillips DI, Fall CH, Cooper C et al. Size at birth and plasma leptin concentrations in adult life. Int. J. Obes. Relat. Metab. Disord.23(10), 1025–1029 (1999).
  • Singhal A, Farooqi IS, O’Rahilly S et al. Early nutrition and leptin concentrations in later life. Am. J. Clin. Nutr.75(6), 993–999 (2002).
  • Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol. Behav. (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.