13
Views
2
CrossRef citations to date
0
Altmetric
Review

Gonadotropin and its role in the β-catenin/T-cell factor signaling pathway

&
Pages 375-385 | Published online: 10 Jan 2014

References

  • Konishi I, Kuroda H, Mandai M. Review: gonadotropins and development of ovarian cancer. Oncology57(Suppl. 2), 45–48 (1999).
  • Cancer Facts and Figures. American Cancer Society, Atlanta, USA (2006).
  • Gadducci A, Cosio S, Gargini A, Genazzani AR. Sex-steroid hormones, gonadotropin and ovarian carcinogenesis: a review of epidemiological and experimental data. Gynecol. Endocrinol.19(4), 216–228 (2004).
  • Tingulstad S, Skjeldestad FE, Halvorsen TB, Hagen B. Survival and prognostic factors in patients with ovarian cancer. Obstet. Gynecol.101, 885–891 (2003).
  • Louvet JP, Harman SM, Nisula BC, Ross GT, Birken S, Canfield R. Follicle stimulating activity of human chorionic gonadotropin: effect of dissociation and recombination of subunits. Endocrinology99(4), 1126–1128 (1976).
  • Leung PC, Steele GL. Intracellular signaling in the gonads. Endocr. Rev.13(3), 476–498 (1992).
  • Leung PC, Armstrong DT. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Annu. Rev. Physiol.42, 71–82 (1980).
  • Richards JS. Hormonal control of gene expression in the ovary. Endocr. Rev.15(6), 725–751 (1994).
  • Hsueh AJ, Adashi EY, Jones PB, Welsh TH Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr. Rev.5, 76–127 (1984).
  • Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev.22(2), 255–288 (2001).
  • Murdoch WJ, Martinchick JF. Oxidative damage to DNA of ovarian surface epithelial cells affected by ovulation: carcinogenic implication and chemoprevention. Exp. Biol. Med. (Maywood)229(6), 546–552 (2004).
  • Wright JW, Toth-Fejel S, Stouffer RL, Rodland KD. Proliferation of rhesus ovarian surface epithelial cells in culture: lack of mitogenic response to steroid or gonadotropic hormones. Endocrinology143(6), 2198–2207 (2002).
  • Zheng W, Lu JJ, Luo F et al. Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone. Gynecol. Oncol.76(1), 80–88 (2000).
  • Parrott JA, Doraiswamy V, Kim G, Mosher R, Skinner MK. Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer. Mol. Cell. Endocrinol.172(1–2), 213–222 (2001).
  • Syed V, Ulinski G, Mok SC, Yiu GK, Ho SM. Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells. Cancer Res.61(18), 6768–6776 (2001).
  • Choi JH, Choi KC, Auersperg N, Leung PC. Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. J. Clin. Endocrinol. Metab.89(11), 5508–5516 (2004).
  • Choi JH, Choi KC, Auersperg N, Leung PC. Gonadotropins upregulate the epidermal growth factor receptor through activation of mitogen-activated protein kinases and phosphatidyl-inositol-3-kinase in human ovarian surface epithelial cells. Endocr. Relat. Cancer12(2), 407–421 (2005).
  • Ivarsson K, Sundfeldt K, Brannstrom M, Hellberg P, Janson PO. Diverse effects of FSH and LH on proliferation of human ovarian surface epithelial cells. Hum. Reprod.16(1), 18–23 (2001).
  • Pon YL, Auersperg N, Wong AS. Gonadotropins regulate N-cadherin-mediated human ovarian surface epithelial cell survival at both post-translational and transcriptional levels through a cyclic AMP/protein kinase A pathway. J. Biol. Chem.280(15), 15438–15448 (2005).
  • Thomas FH, Ethier JF, Shimasaki S, Vanderhyden BC. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology146(2), 941–949 (2005).
  • Edmondson RJ, Monaghan JM, Davies BR. Gonadotropins mediate DNA synthesis and protection from spontaneous cell death in human ovarian surface epithelium. Int. J. Gynecol. Cancer16(1), 171–177 (2006).
  • Pon YL, Wong AS. Gonadotropin-induced apoptosis in human ovarian surface epithelial cells is associated with cyclooxygenase-2 up-regulation via the β-catenin/T-cell factor signaling pathway. Mol. Endocrinol.20(12), 3336–3350 (2006).
  • Bar J, Cohen-Noyman E, Geiger B, Oren M. Attenuation of the p53 response to DNA damage by high cell density. Oncogene23(12), 2128–2137 (2004).
  • Erez N, Zamir E, Gour BJ, Blaschuk OW, Geiger B. Induction of apoptosis in cultured endothelial cells by a cadherin antagonist peptide: involvement of fibroblast growth factor receptor-mediated signalling. Exp. Cell Res.294(2), 366–378 (2004).
  • Shushan A, Paltiel O, Iscovich J, Elchalal U, Peretz T, Schenker JG. Human menopausal gonadotropin and the risk of epithelial ovarian cancer. Fertil. Steril.65(1), 13–18 (1996).
  • Garg PP, Kerlikowske K, Subak L, Grady D. Hormone replacement therapy and the risk of epithelial ovarian carcinoma: a meta-analysis. Obstet. Gynecol.92(3), 472–479 (1998).
  • Mandai M, Konishi I, Kuroda H et al. Messenger ribonucleic acid expression of LH/hCG receptor gene in human ovarian carcinomas. Eur. J. Cancer33(9), 1501–1507 (1997).
  • Wang J, Lin L, Parkash V, Schwartz PE, Lauchlan SC, Zheng W. Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems. Int. J. Cancer103(3), 328–334 (2003).
  • Kramer S, Leeker M, Jager W. Gonadotropin levels in ovarian cyst fluids: a predictor of malignancy? Int. J. Biol. Markers13(3), 165–168 (1998).
  • Halperin R, Pansky M, Vaknin Z, Zehavi S, Bukovsky I, Schneider D. Luteinizing hormone in peritoneal and ovarian cyst fluids: a predictor of ovarian carcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol.110(2), 207–210 (2003).
  • Rzepka-Gorska I, Chudecka-Glaz A, Kosmowska B. FSH and LH serum/tumor fluid ratios and malignant tumors of the ovary. Endocr. Relat. Cancer11(2), 315–321 (2004).
  • Wimalasena J, Dostal R, Meehan D. Gonadotropins, estradiol, and growth factors regulate epithelial ovarian cancer cell growth. Gynecol. Oncol.46(3), 345–350 (1992).
  • Zygmunt M, Herr F, Keller-Schoenwetter S et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J. Clin. Endocrinol. Metab.87(11), 5290–5296 (2002).
  • Schiffenbauer YS, Abramovitch R, Meir G et al. Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proc. Natl Acad. Sci. USA94(24), 13203–13208 (1997).
  • Schiffenbauer YS, Meir G, Maoz M, Even-Ram SC, Bar-Shavit R, Neeman M. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by α(v)-integrin. Gynecol. Oncol.84(2), 296–302 (2002).
  • Choi JH, Choi KC, Auersperg N, Leung PC. Gonadotropins activate proteolysis and increase invasion through protein kinase A and phosphatidylinositol 3-kinase pathways in human epithelial ovarian cancer cells. Cancer Res.66(7), 3912–3920 (2006).
  • He TC, Sparks AB, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science281(5382), 1509–1512 (1998).
  • Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature398(6726), 422–426 (1999).
  • Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol. Cell. Biol.19(8), 5576–5587 (1999).
  • Crawford HC, Fingleton BM, Rudolph-Owen LA et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene18(18), 2883–2891 (1999).
  • Polakis P. The oncogenic activation of β-catenin. Curr. Opin. Genet. Dev.9(1), 15–21 (1999).
  • Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta1653(1), 1–24 (2003).
  • Shevtsov SP, Haq S, Force T. Activation of β-catenin signaling pathway by classical G-protein-coupled receptors. Cell Cycle5(20), 2295–2300 (2006).
  • Heasman J, Crawford A, Goldstone K et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell79(5), 791–803 (1994).
  • Fagotto F, Funayama N, Gluck U, Gumbiner BM. Binding to cadherins antagonizes the signaling activity of β-catenin during axis formation in Xenopus.J. Cell. Biol.132(6), 1105–1114 (1996).
  • Sanson B, White P, Vincent JP. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila.Nature383(6601), 627–630 (1996).
  • Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1-mediated transactivation. J. Cell Sci.112(Pt 8), 1237–1245 (1999).
  • Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R. Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of β-catenin and upregulation of β-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J. Cell. Biol.148(1), 173–188 (2000).
  • Gottardi CJ, Gumbiner BM. Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes. J. Cell. Biol.167(2), 339–349 (2004).
  • Gottardi CJ, Gumbiner BM. Adhesion signaling: how β-catenin interacts with its partners. Curr. Biol.11(19), R792–R794 (2001).
  • Makrigiannakis A, Coukos G, Christofidou-Solomidou M et al. N-cadherin-mediated human granulosa cell adhesion prevents apoptosis: a role in follicular atresia and luteolysis? Am. J. Pathol.154(5), 1391–1406 (1999).
  • Peltoketo H, Allinen M, Vuosku J et al. Characterization and expression of the human WNT4; lack of associated germline mutations in high-to-moderate risk breast and ovarian cancer. Cancer Lett.213(1), 83–90 (2004).
  • Parr BA, Avery EJ, Cygan JA, McMahon AP. The classical mouse mutant postaxial hemimelia results from a mutation in the Wnt 7a gene. Dev. Biol.202(2), 228–234 (1998).
  • Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology143(3), 898–908 (2002).
  • Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology143(7), 2741–2749 (2002).
  • Parakh TN, Hernandez JA, Grammer JC et al. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires β-catenin. Proc. Natl Acad. Sci. USA103(33), 12435–12440 (2006).
  • Boerboom D, Paquet M, Hsieh M et al. Misregulated Wnt/β-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res.65(20), 9206–9215 (2005).
  • Boerboom D, White LD, Dalle S, Courty J, Richards JS. Dominant-stable β-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model. Cancer Res.66(44), 1964–1973 (2006).
  • Choi KC, Auersperg N. The ovarian surface epithelium: simple source of a complex disease. Minerva Ginecol.55(4), 297–314 (2003).
  • Ahmed Y, Hayashi S, Levine A, Wieschaus E. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell93(7), 1171–1182 (1998).
  • Johnston LA, Edgar BA. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature394(6688), 82–84 (1998).
  • Damalas A, Ben-Ze’ev A, Simcha I et al. Excess β-catenin promotes accumulation of transcriptionally active p53. EMBO J.18(11), 3054–3063 (1999).
  • Kim K, Pang KM, Evans M, Hay ED. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell11(10), 3509–3523 (2000).
  • Olmeda D, Castel S, Vilaro S, Cano A. β-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol. Biol. Cell14(7), 2844–2860 (2003).
  • Marrs JA, Nelson WJ. Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol.165, 159–205 (1996).
  • Maines-Bandiera SL, Kruk PA, Auersperg N. Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am. J. Obstet. Gynecol.167(3), 729–735 (1992).
  • Wong AS, Maines-Bandiera SL, Rosen B et al. Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int. J. Cancer81(2), 180–188 (1999).
  • Risinger JI, Berchuck A, Kohler MF, Boyd J. Mutations of the E-cadherin gene in human gynecologic cancers. Nat. Genet.7(1), 98–102 (1994).
  • Rask K, Nilsson A, Brannstrom M et al. Wnt-signalling pathway in ovarian epithelial tumours: increased expression of β-catenin and GSK3β. Br. J. Cancer89(7), 1298–1304 (2003).
  • Palacios J, Gamallo C. Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res.58(7), 1344–1347 (1998).
  • Wright K, Wilson P, Morland S et al. β-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int. J. Cancer82(5), 625–629 (1999).
  • Tsafriri A, Reich R. Molecular aspects of mammalian ovulation. Exp. Clin. Endocrinol. Diabetes107(1), 1–11 (1999).
  • Tokuyama O, Nakamura Y, Muso A, Honda K, Ishiko O, Ogita S. Expression and distribution of cyclooxygenase-2 in human periovulatory ovary. Int. J. Mol. Med.8(6), 603–606 (2001).
  • Richards JS, Russell DL, Ochsner S et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog. Horm. Res.57, 195–57220 (2002).
  • Lim H, Paria BC, Das SK et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell91(2), 197–208 (1997).
  • Davis BJ, Lennard DE, Lee CA et al. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1β. Endocrinology140(6), 2685–2695 (1999).
  • Pall M, Friden BE, Brannstrom M. Induction of delayed follicular rupture in the human by the selective COX-2 inhibitor rofecoxib: a randomized double-blind study. Hum. Reprod.16(7), 1323–1328 (2001).
  • Tsafriri A. Ovulation as a tissue remodelling process. Proteolysis and cumulus expansion. Adv. Exp. Med. Biol.377, 121–140 (1995).
  • Butler TA, Zhu C, Mueller RA, Fuller GC, Lemaire WJ, Woessner JF Jr. Inhibition of ovulation in the perfused rat ovary by the synthetic collagenase inhibitor SC 44463. Biol. Reprod.44(6), 1183–1188 (1991).
  • Yang YL, Roland IH, Godwin AK, Xu XX. Loss of TNF-a-regulated COX-2 expression in ovarian cancer. Oncogene24(54), 7991–8002 (2005).
  • Lee SH, Williams MV, Dubois RN, Blair IA. Cyclooxygenase-2-mediated DNA damage. J. Biol. Chem.280(31), 28337–28346 (2005).
  • Dimino MJ, Snitzer J, Brown KM. Inositol phosphates accumulation in ovarian granulosa after stimulation by luteinizing hormone. Biol. Reprod.37(5), 1129–1134 (1987).
  • Sriraman V, Rudd MD, Lohmann SM, Mulders SM, Richards JS. Cyclic guanosine 5´-monophosphate-dependent protein kinase II is induced by luteinizing hormone and progesterone receptor-dependent mechanisms in granulosa cells and cumulus oocyte complexes of ovulating follicles. Mol. Endocrinol.20(2), 348–361 (2006).
  • McManus EJ, Sakamoto K, Armit LJ et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J.24(8), 1571–1583 (2005).
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378(6559), 785–789 (1995).
  • Fang X, Yu S, Tanyi JL, Lu Y, Woodgett JR, Mills GB. Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway. Mol. Cell. Biol.22(7), 2099–2110 (2002).
  • Kang DE, Soriano S, Xia X et al. Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis. Cell110(6), 751–762 (2002).
  • Yang M, Zhong WW, Srivastava N et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {β}-catenin pathway. Proc. Natl Acad. Sci. USA102(17), 6027–6032 (2005).
  • Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase. J. Biol. Chem.281(15), 9971–9976 (2006).
  • Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol. Cell. Biol.25(20), 9063–9072 (2005).
  • Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J.15(17), 4526–4536 (1996).
  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem.272(40), 24735–24738 (1997).
  • Gwak J, Cho M, Gong SJ et al. Protein-kinase-C-mediated β-catenin phosphorylation negatively regulates the Wnt/β-catenin pathway. J. Cell Sci.119(Pt 22), 4702–4709 (2006).
  • Ishitani T, Kishida S, Hyodo-Miura J et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol.23(1), 131–139 (2003).
  • Ishitani T, Ninomiya-Tsuji J, Nagai S et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature399(6738), 798–802 (1999).
  • Rocheleau CE, Yasuda J, Shin TH et al. WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell97(6), 717–726 (1999).
  • Shin TH, Yasuda J, Rocheleau CE et al. MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol. Cell4(2), 275–280 (1999).
  • Thorpe CJ, Moon RT. Nemo-like kinase is an essential co-activator of Wnt signaling during early zebrafish development. Development131(12), 2899–2909 (2004).
  • He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development131(8), 1663–1677 (2004).
  • Cameron MR, Foster JS, Bukovsky A, Wimalasena J. Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5´-monophosphates in porcine granulosa cells. Biol. Reprod.55(1), 111–119 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.