33
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Progress in the identification of responsible genes and molecular mechanisms in primary aldosteronism

, &

References

  • Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992;120(6):893-901
  • Rocha R, Chander PN, Khanna K, et al. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998;31(1 Pt 2):451-8
  • Rocha R, Stier CT Jr, Kifor I, et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000;141(10):3871-8
  • Mulatero P, Monticone S, Bertello C, et al. Long-term Cardio- and Cerebro-Vascular Events in Patients with Primary Aldosteronism. J Clin Endocrinol Metab 2013;98(12):4826-33
  • Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005;45(8):1243-8
  • Vasan RS, Evans JC, Larson MG, et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med 2004;351(1):33-41
  • Rossi GP, Bernini G, Caliumi C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 2006;48(11):2293-300
  • Conn JW, Louis L. Primary aldosteronism, a new clinical entity. Ann Intern Med 1956;44(1):1-15
  • Funder JW, Carey RM, Fardella C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008;93(9):3266-81
  • Kempers MJE, Lenders JWM, van Outheusden L, et al. Systematic review: diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann Intern Med 2009;151(5):329-37
  • Padfield PL. Prevalence and role of a raised aldosterone to renin ratio in the diagnosis of primary aldosteronism: a debate on the scientific logic of the use of the ratio in practice. Clin Endocrinol (Oxf) 2003;59(4):422-6
  • Isales CM, Barrett PQ, Brines M, et al. Parathyroid hormone modulates angiotensin ii-induced aldosterone secretion from the adrenal glomerulosa cell. Endocrinology 1991;129(1):489-95
  • Albano JD, Brown BL, Ekins RP, et al. The effects of potassium, 5-hydrocytryptamine, adrenocorticotrophin and angiotensin II on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasciculata cells. Biochem J 1974;142(2):391-400
  • Cozza EN, Gomez-Sanchez CE. Mechanisms of ET-1 potentiation of angiotensin II stimulation of aldosterone production. Am J Physiol 1993;265(2 Pt 1):E179-83
  • Spat A. Glomerulosa cells, a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol 2004;217(1-2):23-6
  • Enyeart JA, Danthi SJ, Enyeart JJ. TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 2004;287(6):E1154-65
  • Nogueira EF, Gerry D, Mantero F, et al. The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clin Endocrinol (Oxf) 2010;73(1):22-9
  • Lenzini L, Caroccia B, Campos AG, et al. Lower expression of the twik-related acid-sensitive k+ channel 2 (task-2) gene is a hallmark of aldosterone producing adenoma causing human primary aldosteronism. J Clin Endocrinol Metab 2013. [Epub ahead of print]
  • Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011;331(6018):768-72
  • Brenner T, O'Shaughnessy KM. Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion. Am J Physiol Endocrinol Metab 2008;295(6):E1480-6
  • Matsunaga H, Maruyama Y, Kojima I, Hoshi T. Transient Ca2+-channel current characterized by a low-threshold voltage in zona glomerulosa cells of rat adrenal cortex. Pflugers Arch 1987;408(4):351-5
  • Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004;84(2):489-539
  • Bassett MH, Suzuki T, Sasano H, et al. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol 2004;18(2):279-90
  • Spyroglou A, Manolopoulou J, Wagner S, et al. Short term regulation of aldosterone secretion after stimulation and suppression experiments in mice. J Mol Endocrinol 2009;42(5):407-13
  • Kempna P, Fluck CE. Adrenal gland development and defects. Best Pract Res Clin Endocrinol Metabol 2008;22(1):77-93
  • Wood MA, Hammer GD. Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol Cell Endocrinol 2011;336(1-2):206-12
  • Boulkroun S, Samson-Couterie B, Golib-Dzib JF, et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 2011;152(12):4753-63
  • Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966;95(22):1109-19
  • Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992;355(6357):262-5
  • Pizzolo F, Trabetti E, Guarini P, et al. Glucocorticoid remediable aldosteronism (GRA) screening in hypertensive patients from a primary care setting. J Hum Hypertens 2005;19(4):325-7
  • Lafferty AR, Torpy DJ, Stowasser M, et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet 2000;37(11):831-5
  • Carss KJ, Stowasser M, Gordon RD, O'Shaughnessy KM. Further study of chromosome 7p22 to identify the molecular basis of familial hyperaldosteronism type II. J Hum Hypertens 2011;25(9):560-4
  • Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 2008;93(8):3117-23
  • Scholl UI, Nelson-Williams C, Yue P, et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci USA 2012;109(7):2533-8
  • Charmandari E, Sertedaki A, Kino T, et al. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab 2012;97(8):E1532-9
  • Mulatero P, Tauber P, Zennaro MC, et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 2012;59(2):235-40
  • Monticone S, Hattangady NG, Penton D, et al. A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J Clin Endocrinol Metab 2013;98(11):E1861-5
  • Scholl UI, Lifton RP. New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5. Curr Opin Nephrol Hypertens 2013;22(2):141-7
  • Scholl UI, Goh G, Stolting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013;45(9):1050-4
  • Akerstrom T, Crona J, Delgado Verdugo A, et al. comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS One 2012;7(7):e41926
  • Boulkroun S, Beuschlein F, Rossi GP, et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension 2012;59(3):592-8
  • Azizan EAB, Murthy M, Stowasser M, et al. Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 2012;59(3):587-91
  • Taguchi R, Yamada M, Nakajima Y, et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab 2012;97(4):1311-19
  • Williams TA, Monticone S, Schack VR, et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 2013;63(1):188-95
  • Seccia TM, Mantero F, Letizia C, et al. Somatic mutations in the KCNJ5 gene raise the lateralization index: implications for the diagnosis of primary aldosteronism by adrenal vein sampling. J Clin Endocrinol Metab 2012;97(12):E2307-13
  • Oswald A, Fischer E, Degenhart C, et al. Lack of influence of somatic mutations on steroid gradients during adrenal vein sampling in aldosterone-producing adenoma patients. Eur J Endocrinol 2013;169(5):657-63
  • Boulkroun S, Golib Dzib JF, Samson-Couterie B, et al. KCNJ5 mutations in aldosterone producing adenoma and relationship with adrenal cortex remodeling. Mol Cell Endocrinol 2013;371(1-2):221-7
  • Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013;45(4):440-2
  • Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013;45(9):1055-60
  • Sackmann S, Lichtenauer U, Shapiro I, et al. Aldosterone producing adrenal adenomas are characterized by activation of calcium/calmodulin-dependent protein kinase (CaMK) dependent pathways. Horm Metab Res 2011;43(2):106-11
  • Lenzini L, Seccia TM, Aldighieri E, et al. Heterogeneity of aldosterone-producing adenomas revealed by a whole transcriptome analysis. Hypertension 2007;50(6):1106-13
  • Steichen O, Zinzindohoue F, Plouin PF, Amar L. Outcomes of adrenalectomy in patients with unilateral primary aldosteronism: a review. Horm Metab Res 2012;44(3):221-7
  • Rossi GP, Cesari M, Cuspidi C, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 2013;62(1):62-9
  • Newton-Cheh C, Guo CY, Gona P, et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 2007;49(4):846-56
  • Alvarez-Madrazo S, Padmanabhan S, Mayosi BM, et al. Familial and phenotypic associations of the aldosterone Renin ratio. J Clin Endocrinol Metab 2009;94(11):4324-33
  • Inglis GC, Ingram MC, Holloway CD, et al. Familial pattern of corticosteroids and their metabolism in adult human subjects–the Scottish Adult Twin Study. J Clin Endocrinol Metab 1999;84(11):4132-7
  • Makhanova N, Hagaman J, Kim HS, Smithies O. Salt-sensitive blood pressure in mice with increased expression of aldosterone synthase. Hypertension 2008;51(1):134-40
  • Sookoian S, Gianotti TF, Gonzalez CD, Pirola CJ. Association of the C-344T aldosterone synthase gene variant with essential hypertension: a meta-analysis. J Hypertens 2007;25(1):5-13
  • Paillard F, Chansel D, Brand E, et al. Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population. Hypertension 1999;34(3):423-9
  • Davies E, Holloway CD, Ingram MC, et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension 1999;33(2):703-7
  • Freel EM, Ingram M, Friel EC, et al. Phenotypic consequences of variation across the aldosterone synthase and 11-beta hydroxylase locus in a hypertensive cohort: data from the MRC BRIGHT Study. Clin Endocrinol (Oxf) 2007;67(6):832-8
  • Imrie H, Freel M, Mayosi BM, et al. Association between aldosterone production and variation in the 11beta-hydroxylase (CYP11B1) gene. J Clin Endocrinol Metab 2006;91(12):5051-6
  • Keavney B, Mayosi B, Gaukrodger N, et al. Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion. J Clin Endocrinol Metab 2005;90(2):1072-7
  • Barr M, MacKenzie SM, Friel EC, et al. Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency. Hypertension 2007;49(1):113-19
  • McManus F, Sands W, Diver L, et al. APEX1 regulation of aldosterone synthase gene transcription is disrupted by a common polymorphism in humans. Circ Res 2012;111(2):212-19
  • Alvarez-Madrazo S, MacKenzie SM, Davies E, et al. Common polymorphisms in the CYP11B1 and CYP11B2 genes: evidence for a digenic influence on hypertension. Hypertension 2013;61(1):232-9
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 2005;120(1):15-20
  • Romero DG, Plonczynski MW, Carvajal CA, et al. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 2008;149(5):2477-83
  • Robertson S, MacKenzie SM, Alvarez-Madrazo S, et al. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 2013;62(3):572-8
  • Davies LA, Hu C, Guagliardo NA, et al. TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci USA 2008;105(6):2203-8
  • Heitzmann D, Derand R, Jungbauer S, et al. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 2008;27(1):179-87
  • Suwazono Y, Dochi M, Sakata K, et al. Shift work is a risk factor for increased blood pressure in Japanese men: a 14-year historical cohort study. Hypertension 2008;52(3):581-6
  • Guo Y, Liu Y, Huang X, et al. The effects of shift work on sleeping quality, hypertension and diabetes in retired workers. PLoS One 2013;8(8):e71107
  • McCubbin J, Pilcher J, Moore DD. Blood pressure increases during a simulated night shift in persons at risk for hypertension. Int J Behav Med 2010;17(4):314-20
  • Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 2013
  • Doi M, Takahashi Y, Komatsu R, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 2010;16(1):67-74
  • Okamura H, Doi M, Yamaguchi Y, Fustin JM. Hypertension due to loss of clock: novel insight from the molecular analysis of cry1/cry2-deleted mice. Curr Hypertens Rep 2011;13(2):103-8
  • Rosmond R, Chagnon M, Bouchard C, Bjorntorp P. Polymorphism in exon 4 of the human 3 beta-hydroxysteroid dehydrogenase type I gene (HSD3B1) and blood pressure. Biochem Biophys Res Commun 2002;293(1):629-32
  • Shimodaira M, Nakayama T, Sato N, et al. Association of HSD3B1 and HSD3B2 gene polymorphisms with essential hypertension, aldosterone level, and left ventricular structure. Eur J Endocrinol 2010;163(4):671-80
  • Stow LR, Richards J, Cheng KY, et al. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 2012;59(6):1151-6
  • Richards J, Cheng KY, All SC, et al. A role for the circadian clock protein per1 in the regulation of aldosterone levels and renal sodium retention. Am J Physiol Renal Physiol 2013;305(12):F1697-704
  • Tissier F, Cavard C, Groussin L, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 2005;65(17):7622-7
  • Berthon A, Sahut-Barnola I, Lambert-Langlais S, et al. Constitutive B-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 2010;19(8):1561-76
  • Berthon A, Drelon C, Ragazzon B, et al. WNT/B-catenin Signalling is activated in aldosterone producing adenomas and controls aldosterone production. Hum Mol Genet 2013. [Epub ahead of print]
  • Tadjine M, Lampron A, Ouadi L, Bourdeau I. Frequent mutations of B-catenin gene in sporadic secreting adrenocortical adenomas*. Clin Endocrinol (Oxf) 2008;68(2):264-70
  • Gupta P, Franco-Saenz R, Mulrow PJ. Transforming growth factor-beta 1 inhibits aldosterone biosynthesis in cultured bovine zona glomerulosa cells. Endocrinology 1993;132(3):1184-8
  • Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type β1. Hum Mol Genet 1999;8(1):93-7
  • Niu W. Evaluation of transforming growth factor beta-1 gene 869T/C polymorphism with hypertension: a meta-analysis. Int J Hypertens 2011;2011:934265
  • Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-β1 gene in relation to myocardial infarction and blood pressure: the etude cas-temoin de l'infarctus du myocarde (ECTIM) study. Hypertension 1996;28(5):881-7
  • Kakoki M, Pochynyuk OM, Hathaway CM, et al. Primary aldosteronism and impaired natriuresis in mice underexpressing TGFbeta1. Proc Natl Acad Sci USA 2013;110(14):5600-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.