93
Views
4
CrossRef citations to date
0
Altmetric
Review

Molecular genetic advances in pituitary tumor development

, &

References

  • Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 2010;72(3):377-82
  • Herman V, Fagin J, Gonsky R, et al. Clonal origin of pituitary-adenomas. J Clin Endocrinol Metab 1990;71(6):1427-33
  • Scheithauer BW, Gaffey TA, Lloyd RV, et al. Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 2006;59(2):341-53
  • Levy A. Molecular and trophic mechanisms of tumorigenesis. Endocrinol Metab Clin North Am 2008;37(1):23-50
  • Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 2013;34(3):228-52
  • Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev 2006;27(5):485-534
  • Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest 2009;119(11):3189-202
  • Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol 2011;7(5):257-66
  • Jaffrain-Rea ML, Daly AF, Angelini M, et al. Genetic susceptibility in pituitary adenomas: from pathogenesis to clinical implications. Expert Rev Endocrinol Metab 2011;6(2):195-214
  • Thakker RV. Multiple Endocrine Neoplasia Type 1 (MEN1) and Type 4 (MEN4). Mol Cell Endocrinol 2014;386(1-2):2-15
  • Thakker RV, Newey PJ, Walls GV, et al. Clinical Practice Guidelines for Multiple Endocrine Neoplasia Type 1 (MEN1). J Clin Endocrinol Metab 2012;97(9):2990-3011
  • Lemos MC, Thakker RV. Multiple endocrine neoplaslia type 1 (MEN 1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008;29(1):22-32
  • Owens M, Ellard S, Vaidya B. Analysis of gross deletions in the MEN1 gene in patients with multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf) 2008;68(3):350-4
  • Cuny T, Pertuit M, Sahnoun-Fathallah M, et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don’t forget MEN1 genetic analysis. Eur J Endocrinol 2013;168(4):533-41
  • Theodoropoulou M, Cavallari I, Barzon L, et al. Differential expression of menin in sporadic pituitary adenomas. Endocr Relat Cancer 2004;11(2):333-44
  • Huang J, Gurung B, Wan BB, et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 2012;482(7386):542-U141
  • Balogh K, Patocs A, Hunyady L, Racz K. Menin dynamics and functional insight: take your partners. Mol Cell Endocrinol 2010;326(1-2):80-4
  • Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009;94(5):1826-34
  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27(Kip1) cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103(42):15558-63
  • Occhi G, Regazzo D, Trivellin G, et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 2013;9(3):e1003350
  • Tichomirowa MA, Lee M, Barlier A, et al. Cyclin-dependent kinase inhibitor 1B(CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr Relat Cancer 2012;19(3):233-41
  • Georgitsi M, Raitila A, Karhu A, et al. Germline CDKN1B/p27(Kip1) mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007;92(8):3321-5
  • Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008;8(4):253-67
  • Ikeda H, Yoshimoto T, Shida N. Molecular analysis of p21 and p27 genes in human pituitary adenomas. Br J Cancer 1997;76(9):1119-23
  • Jin L, Qian X, Kulig E, et al. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27(Kip1) expression in nontumorous and neoplastic human pituitaries. Am J Pathol 1997;151(2):509-19
  • Stratakis CA, Kirschner LS, Carney JA. Genetics of endocrine disease - Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab 2001;86(9):4041-6
  • Pack SD, Kirschner LS, Pak E, et al. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J Clin Endocrinol Metab 2000;85(10):3860-5
  • Matyakhina L, Pack S, Kirschner LS, et al. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 2003;40(4):268-77
  • Casey M, Vaughan CJ, He J, et al. Mutations in the protein kinase A R1 alpha regulatory subunit cause familial cardiac myxomas and Carney complex. J Clin Invest 2000;106(5):R31-8
  • Kirschner LS. PRKAR1A and the evolution of pituitary tumors. Mol Cell Endocrinol 2010;326(1-2):3-7
  • Nadella KS, Kirschner LS. Disruption of protein kinase A regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res 2005;65(22):10307-15
  • Mavrakis M, Lippincott-Schwartz J, Stratakis CA, Bossis I. Depletion of type IA regulatory subunit (RI alpha) of protein kinase A (PKA) in mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum Mol Genet 2006;15(19):2962-71
  • Kaltsas GA, Kola B, Borboli N, et al. Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours. Clin Endocrinol (Oxf) 2002;57(4):443-8
  • Stratakis CA, Tichomirowa MA, Boikos S, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 2010;78(5):457-63
  • Vortmeyer AO, Glasker S, Mehta GU, et al. Somatic GNAS Mutation Causes Widespread and Diffuse Pituitary Disease in Acromegalic Patients with McCune-Albright Syndrome. J Clin Endocrinol Metab 2012;97(7):2404-13
  • Weinstein LS, Shenker A, Gejman PV, et al. Activating mutations of the stimulatory g-protein in the McCune-Albright syndrome. N Engl J Med 1991;325(24):1688-95
  • Mantovani G, Lania AG, Spada A. GNAS imprinting and pituitary tumors. Mol Cell Endocrinol 2010;326(1-2):15-18
  • Mantovani G, Bondioni S, Lania AG, et al. Parental origin of G(s)alpha mutations in the McCune-Albright syndrome and in isolated endocrine tumors. J Clin Endocrinol Metab 2004;89(6):3007-9
  • Hayward BE, Barlier A, Korbonits M, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001;107(6):R31-6
  • Picard C, Silvy M, Gerard C, et al. Gs alpha overexpression and loss of Gs alpha imprinting in human somatotroph adenomas: association with tumor size and response to pharmacologic treatment. Int J Cancer 2007;121(6):1245-52
  • Papathomas TG, Gaal J, Corssmit EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol 2014;170(1):1-12
  • Daly AF, Jaffrain-Rea ML, Ciccarelli A, et al. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab 2006;91(9):3316-23
  • Georgitsi M, Raitila A, Karhu A, et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc Natl Acad Sci USA 2007;104(10):4101-5
  • Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial Isolated Pituitary Adenomas (FIPA) and the Pituitary Adenoma Predisposition due to Mutations in the Aryl Hydrocarbon Receptor Interacting Protein (AIP) Gene. Endocr Rev 2013;34(2):239-77
  • Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312(5777):1228-30
  • Chahal HS, Stals K, Unterlander M, et al. AIP mutation in pituitary adenomas in the 18th century and today. N Engl J Med 2011;364(1):43-50
  • Tichomirowa MA, Barlier A, Daly AF, et al. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur J Endocrinol 2011;165(4):509-15
  • Daly AF, Tichomirowa MA, Petrossians P, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab 2010;95(11):E373-83
  • Toledo RA, Lourenco DM, Toledo SP. Familial isolated pituitary adenoma: evidence for genetic heterogeneity. In: Arzt E, Bronstein M, Guitelman M, editors. Pituitary today II: new molecular, physiological and clinical aspects. Karger; Berlin, Germany: 2010. p. 77-86
  • Morgan RM, Hernandez-Ramirez LC, Trivellin G, et al. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal alpha-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition. PLoS One 2012;7(12):e53339
  • Heliovaara E, Raitila A, Launonen V, et al. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas. Am J Pathol 2009;175(6):2501-7
  • Jaffrain-Rea ML, Rotondi S, Turchi A, et al. Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocr Relat Cancer 2013;20(5):753-66
  • Jaffrain-Rea ML, Angelini M, Gargano D, et al. Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocr Relat Cancer 2009;16(3):1029-43
  • Newey PJ, Nesbit MA, Rimmer AJ, et al. Whole-Exome Sequencing Studies of Nonfunctioning Pituitary Adenomas. J Clin Endocrinol Metab 2013;98(4):E796-800
  • Zhou Y, Zhang X, Klibanski A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol Cell Endocrinol 2014;386(1-2): Chapter 2
  • Jaffrain-Rea ML, Rotondi S, Alesse E. New insights in the pathogenesis of pituitary tumours. In: Fedele DM, editor. Hot topics in endocrine and endocrine-related diseases. Intech; Croatia: 2013 ; Chapter 2, p. 27-84
  • Qian ZR, Sano T, Yoshimoto K, et al. Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 2007;20(12):1269-77
  • Elston MS, Gill AJ, Conaglen JV, et al. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab 2009;94(4):1436-42
  • Shimon I, Hinton DR, Weiss MH, Melmed S. Prolactinomas express human heparin-binding secretory transforming gene (hst) protein product: marker of tumour invasiveness. Clin Endocrinol (Oxf) 1998;48(1):23-9
  • Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007;170(5):1618-28
  • Mukdsi JH, De Paul AL, Petiti JP, et al. Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas. Acta Neuropathol 2006;112(4):491-501
  • Ezzat S, Zheng L, Zhu XF, et al. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109(1):69-78
  • Sarkar DK, Kim KH, Minami S. Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 1992;6(11):1825-33
  • Minami S, Sarkar DK. Transforming growth factor-beta 1 inhibits prolactin secretion and lactotropic cell proliferation in the pituitary of oestrogen-treated Fischer 344 rats. Neurochem Int 1997;30(4-5):499-506
  • Danila DC, Zhang X, Zhou Y, et al. Overexpression of wild-type activin receptor alk4-1 restores activin antiproliferative effects in human pituitary tumor cells. J Clin Endocrinol Metab 2002;87(10):4741-6
  • Giacomini D, Acuna M, Gerez J, et al. Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 2007;85(2):94-100
  • Paez-Pereda M, Giacomini D, Refojo D, et al. Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc Natl Acad Sci USA 2003;100(3):1034-9
  • Cooper O, Vlotides G, Fukuoka H, et al. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 2011;18(6):R197-211
  • Theodoropoulou M, Arzberger T, Gruebler Y, et al. Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J Endocrinol 2004;183(2):385-94
  • Chaidarun SS, Eggo MC, Sheppard MC, Stewart PM. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology 1994;135(5):2012-21
  • Lloyd RV, Scheithauer BW, Kuroki T, et al. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 1999;10(3):229-35
  • Yarman S, Kurtulmus N, Canbolat A, et al. Expression of Ki-67, p53 and vascular endothelial growth factor (VEGF) concomitantly in growth hormone-secreting pituitary adenomas; which one has a role in tumor behavior? Neuroendocrinol Lett 2010;31(6):823-8
  • Kurosaki M, Saeger W, Abe T, Ludecke DK. Expression of vascular endothelial growth factor in growth hormone-secreting pituitary adenomas: special reference to the octreotide treatment. Neurol Res 2008;30(5):518-22
  • Onofri C, Theodoropoulou M, Losa M, et al. Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol 2006;191(1):249-61
  • Sanchez-Ortiga R, Sanchez-Tejada L, Moreno-Perez O, et al. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 2013;16(3):370-7
  • Yacqub-Usman K, Duong CV, Clayton RN, Farrell WE. Epigenomic silencing of the BMP-4 gene in pituitary adenomas: a potential target for epidrug-induced re-expression. Endocrinology 2012;153(8):3603-12
  • Landis CA, Masters SB, Spada A, et al. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989;340(6236):692-6
  • Spada A, Vallar L, Faglia G. G-proteins and hormonal signalling in human pituitary tumors: genetic mutations and functional alterations. Front Neuroendocrinol 1993;14(3):214-32
  • Thakker RV, Pook MA, Wooding C, et al. Association of somatotrophinomas with loss of alleles on chromosome 11 and with gsp mutations. J Clin Invest 1993;91(6):2815-21
  • Barlier A, Pellegrini-Bouiller I, Gunz G, et al. Impact of gsp oncogene on the expression of genes coding for Gsalpha, Pit-1, Gi2alpha, and somatostatin receptor 2 in human somatotroph adenomas: involvement in octreotide sensitivity. J Clin Endocrinol Metab 1999;84(8):2759-65
  • Lania AG, Mantovani G, Ferrero S, et al. Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res 2004;64(24):9193-8
  • Mantovani G, Bondioni S, Ferrero S, et al. Effect of cyclic adenosine 3’,5’-monophosphate/protein kinase a pathway on markers of cell proliferation in nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2005;90(12):6721-4
  • Simpson DJ, Magnay J, Bicknell JE, et al. Chromosome 13q deletion mapping in pituitary tumors: infrequent loss of the retinoblastoma susceptibility gene (RB1) locus despite loss of RB1 protein product in somatotrophinomas. Cancer Res 1999;59(7):1562-6
  • Simpson DJ, Hibberts NA, McNicol AM, et al. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res 2000;60(5):1211-16
  • Pei L, Melmed S, Scheithauer B, et al. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary-tumors - evidence for a chromosome-13 tumor-suppressor gene other than RB. Cancer Res 1995;55(8):1613-16
  • Karga HJ, Alexander JM, Hedleywhyte ET, et al. Ras mutations in human pituitary-tumors. J Clin Endocrinol Metab 1992;74(4):914-19
  • Tanizaki Y, Jin L, Scheithauer BW, et al. P53 gene mutations in pituitary carcinomas. Endocr Pathol 2007;18(4):217-22
  • Ogino A, Yoshino A, Katayama Y, et al. The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 2005;64(5):398-403
  • Hibberts NA, Simpson DJ, Bicknell JE, et al. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 1999;5(8):2133-9
  • Jordan S, Lidhar K, Korbonits M, et al. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 2000;143(1):R1-6
  • Roussel-Gervais A, Bilodeau S, Vallette S, et al. Cooperation between Cyclin E and p27(Kip1) in Pituitary Tumorigenesis. Mol Endocrinol 2010;24(9):1835-45
  • Nakabayashi H, Sunada I, Hara M. Immunohistochemical analyses of cell cycle-related proteins, apoptosis, and proliferation in pituitary adenomas. J Histochem Cytochem 2001;49(9):1193-4
  • Wierinckx A, Auger C, Devauchelle P, et al. A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 2007;14(3):887-900
  • De Martino I, Visone R, Wierinckx A, et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 2009;69(5):1844-50
  • Lidhar K, Korbonits M, Jordan S, et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 1999;84(10):3823-30
  • Bamberger CM, Fehn M, Bamberger AM, et al. Reduced expression levels of the cell-cycle inhibitor p27(Kip1) in human pituitary adenomas. Eur J Endocrinol 1999;140(3):250-5
  • Wang HB, Bauzon F, Ji P, et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1(+/-) mice. Nat Genet 2010;42(1):83-U105
  • Bellodi C, Krasnykh O, Haynes N, et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010;70(14):6026-35
  • Bai F, Pei XH, Pandolfi PP, Xiong Y. p18(Ink4c) and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol Cell Biol 2006;26(12):4564-76
  • Yoshino A, Katayama Y, Ogino A, et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 2007;83(2):153-62
  • Woloschak M, Yu A, Post KD. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 1997;19(4):221-4
  • Simpson DJ, Bicknell JE, McNicol AM, et al. Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer 1999;24(4):328-36
  • Jaffrain-Rea ML, Ferretti E, Toniato E, et al. p16 (INK4a, MTS-1) gene polymorphism and methylation status in human pituitary tumours. Clin Endocrinol (Oxf) 1999;51(3):317-25
  • Yoshimoto K, Tanaka C, Yamada S, et al. Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. Eur J Endocrinol 1997;136(1):74-80
  • Franklin DS, Godfrey VL, Lee H, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998;12(18):2899-911
  • Kirsch M, Morz M, Pinzer T, et al. Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas. Genes Chromosomes Cancer 2009;48(2):143-54
  • Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003;88(11):5119-26
  • Bahar A, Bicknell JE, Simpson DJ, et al. Loss of expression of the growth inhibitory gene GADD45 gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 2004;23(4):936-44
  • Simpson DJ, Clayton RN, Farrell WE. Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene 2002;21(8):1217-24
  • Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 2010;151(3):939-47
  • Michaelis KA, Knox AJ, Xu M, et al. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45 beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 2011;152(10):3603-13
  • Pagotto U, Arzberger T, Theodoropoulou M, et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 2000;60(24):6794-9
  • Dudley KJ, Revill K, Clayton RN, Farrell WE. Pituitary tumours: all silent on the epigenetics front. J Mol Endocrinol 2009;42(5-6):461-8
  • Bahar A, Simpson DJ, Cutty SJ, et al. Isolation and characterization of a novel pituitary tumor apoptosis gene. Mol Endocrinol 2004;18(7):1827-39
  • Salehi F, Kovacs K, Scheithauer BW, et al. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr Relat Cancer 2008;15(3):721-43
  • Alatzoglou KS, Andoniadou CL, Kelberman D, et al. SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours. Hum Mutat 2011;32(12):1376-80
  • Finelli P, Pierantoni GM, Giardino D, et al. The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002;62(8):2398-405
  • Fedele M, Visone R, De Martino I, et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006;9(6):459-71
  • Sivapragasam M, Rotondo F, Lloyd RV, et al. MicroRNAs in the Human Pituitary. Endocr Pathol 2011;22(3):134-43
  • Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 2005;204(1):280-5
  • Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 2007;210(2):370-7
  • Stilling G, Sun ZF, Zhang SY, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and-493 in pituitary carcinomas. Endocrine 2010;38(1):67-75
  • Butz H, Liko I, Czirjak S, et al. MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 2011;14(2):112-24
  • Butz H, Liko I, Czirjak S, et al. Down-regulation of Wee1 Kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 2010;95(10):E181-91
  • Mao ZG, He DS, Zhou J, et al. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 2010;5:79
  • Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009;94(1):320-3
  • Colao A, Savastano S. Medical treatment of prolactinomas. Nat Rev Endocrinol 2011;7(5):267-78
  • Maria Luque G, Ines Perez-Millan M, Maria Ornstein A, et al. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J Pharmacol Exp Ther 2011;337(3):766-74
  • Korsisaari N, Ross J, Wu X, et al. Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res 2008;14(1):249-58
  • Newey PJ, Gorvin CM, Cleland SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 2014;370(10):977-8
  • Sandret L, Maison P, Chanson P. Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocrinol Metab 2011;96(5):1327-35
  • Neggers SJ, Franck SE, de Rooij FW, et al. Long-term efficacy and safety of pegvisomant in combination with long-acting somatostatin analogues in acromegaly. J Clin Endocrinol Metab 2014. [Epub ahead of print]
  • Feelders RA, Hofland LJ. Medical treatment of Cushing’s disease. J Clin Endocrinol Metab 2013;98(2):425-38
  • Fukuoka H, Cooper O, Ben-Shlomo A, et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 2011;121(12):4712-21
  • McCormack AI, Wass JA, Grossman AB. Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur J Clin Invest 2011;41(10):1133-48
  • Cerovac V, Monteserin-Garcia J, Rubinfeld H, et al. The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res 2010;70(2):666-74
  • Gorshtein A, Rubinfeld H, Kendler E, et al. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr Relat Cancer 2009;16(3):1017-27
  • Zatelli MC, Minoia M, Filieri C, et al. Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2010;95(2):968-76
  • Jouanneau E, Wierinckx A, Ducray F, et al. New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary 2012;15(1):37-43
  • Paez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest 2001;108(8):1123-31
  • Giraldi FP, Ambrogio AG, Andrioli M, et al. Potential Role for Retinoic Acid in Patients with Cushing’s Disease. J Clin Endocrinol Metab 2012;97(10):3577-83
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105(30):10513-18
  • Liu NA, Jiang H, Ben-Shlomo A, et al. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 2011;108(20):8414-19
  • Walls GV, Lemos MC, Javid M, et al. men1 gene replacement therapy reduces proliferation rates in a mouse model of pituitary adenomas. Cancer Res 2012;72(19):5060-8
  • Moreno CS, Evans CO, Zhan XQ, et al. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 2005;65(22):10214-22
  • Kelberman D, de Castro SC, Huang S, et al. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J Clin Endocrinol Metab 2008;93(5):1865-73
  • Giacomini D, Paez-Pereda M, Theodoropoulou M, et al. Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology 2006;147(1):247-56
  • D’Angelo D, Palmieri D, Mussnich P, et al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 2012;97(7):E1128-38
  • Cheunsuchon P, Zhou Y, Zhang X, et al. Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol 2011;179(4):2120-30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.