136
Views
2
CrossRef citations to date
0
Altmetric
Theme: Pituitary Disorders - Review

Current imaging techniques for the diagnosis of pituitary adenoma

, &
Pages 163-170 | Received 26 Oct 2015, Accepted 04 Feb 2016, Published online: 24 Feb 2016

References

  • Laws ER Jr, Barkhoudarian G. The transition from microscopic to endoscopic transsphenoidal surgery: the experience at Brigham and Women’s Hospital. World Neurosurg. 2014;82(6 Suppl):S152–154.
  • Barkhoudarian G, Zada G, Laws ER. Endoscopic endonasal surgery for nonadenomatous sellar/parasellar lesions. World Neurosurg. 2014;82(6 Suppl):S138–146.
  • Emanuel L. To the bitter end:a photographic history of the Boer War 1899–1902. London: Penguin Books; 1985.
  • Gunderman RB, Seymour ZA. Harvey cushing: pioneer in neurosurgery and neuroimaging. AJR. 2010;194(2):296–298.
  • Bi WL, Dunn IF, Laws ER Jr. Image guidance and visualization in pituitary surgery. In: Golby A, editor. Image-guided neurosurgery. Amsterdam: Elsevier; 2015.
  • Liu JK, Das K, Weiss MH, et al. The history and evolution of transsphenoidal surgery. J Neurosurg. 2001;95(6):1083–1096.
  • Lanzino G, Laws ER Jr. Pioneers in the development of transsphenoidal surgery: theodor Kocher, Oskar Hirsch, and Norman Dott. J Neurosurg. 2001;95(6):1097–1103.
  • Hardy J. Transsphenoidal hypophysectomy. 1971. J Neurosurg. 2007;107(2):458–471.
  • Geva T. Magnetic resonance imaging: historical perspective. J Cardiovasc Magn Reson. 2006;8(4):573–580.
  • Latchaw RE, Roppole HM. Radiographic evaluation of the normal sella turcica and the pituitary gland. In: Radiological diagnosis imaging intervention. Philadelphia (PA): JB Lippincott Co.; 1986. p. 1–7.
  • Turski PA, Newton TH, Horten BH. Sellar contour: anatomic-polytomographic correlation. Am J Roentgenology. 1981;137(2):213–216.
  • Zada G, Agarwalla PK, Mukundan S Jr, et al. The neurosurgical anatomy of the sphenoid sinus and sellar floor in endoscopic transsphenoidal surgery. J Neurosurg. 2011;114(5):1319–1330.
  • Cottier JP, Destrieux C, Brunereau L, et al. Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology. 2000;215(2):463–469.
  • Cho CH, Barkhoudarian G, Hsu L, et al. Magnetic resonance imaging validation of pituitary gland compression and distortion by typical sellar pathology. J Neurosurg. 2013;119(6):1461–1466.
  • Hess CP, Dillon WP. Imaging the pituitary and parasellar region. Neurosurg Clin N Am. 2012;23(4):529–542.
  • Jiménez P, Brell M, Sarriá-Echegaray P, et al. “Intrasellar Balloon Technique” in intraoperative MRI guided transsphenoidal endoscopic surgery for sellar region tumors. Usefulness on image interpretation and extent of resection evaluation. Technical note. Acta Neurochir. 2016;158:445–449.
  • Dalvi M, Walker BR, Strachan MW, et al. The prevalence of structural pituitary abnormalities by MRI scanning in men presenting with isolated hypogonadotrophic hypogonadism. Clin Endocrinol. 2016. [Epub ahead of print].
  • FitzPatrick M, Tartaglino LM, Hollander MD, et al. Imaging of sellar and parasellar pathology. Radiol Clin North Am. 1999;37(1):101–121.
  • Kim LJ, Lekovic GP, White WL, et al. Preliminary experience with 3-tesla MRI and Cushing’s disease. Skull Base. 2007;17(4):273–277.
  • Laws ER, Vance ML, Thapar K. Pituitary surgery for the management of acromegaly. Horm Res. 2000;53(Suppl 3):71–75.
  • Smith TR, Hulou MM, Huang KT, et al. Current indications for the surgical treatment of prolactinomas. J Clin Neuroscience. 2015;22(11):1785–1791.
  • Jane JA Jr, Laws ER Jr. Surgical treatment of pituitary adenomas. In: De Groot LJ, Beck-Peccoz P, Chrousos G, et al. editors. South Dartmouth (MA): Endotext; 2000.
  • Laws ER. Surgery for acromegaly: evolution of the techniques and outcomes. Rev Endocr Metab Disord. 2008;9(1):67–70.
  • Bergstrom M, Muhr C, Lundberg PO, et al. PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Medicine. 1991;32(4):610–615.
  • Koulouri O, Steuwe A, Gillett D, et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome. Eur J Endocrinology/European Fed Endocr Societies. 2015;173(4):M107–120.
  • Ikeda H, Abe T, Watanabe K. Usefulness of composite methionine-positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J Neurosurg. 2010;112(4):750–755.
  • Bohinski RJ, Warnick RE, Gaskill-Shipley MF, et al. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery. 2001;49(5):1133–1143. discussion 1143-1134
  • Berkmann S, Fandino J, Zosso S, et al. Intraoperative magnetic resonance imaging and early prognosis for vision after transsphenoidal surgery for sellar lesions. J Neurosurg. 2011;115(3):518–527.
  • Jones J, Ruge J. Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg Focus. 2007;23(5):E12.
  • Netuka D, Masopust V, Belsan T, et al. One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir Suppl. 2011;109:157–159.
  • Schwartz TH, Stieg PE, Anand VK. Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery. 2006;58(1 Suppl):ONS44–51. discussion ONS44-51
  • Theodosopoulos PV, Leach J, Kerr RG, et al. Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J Neurosurg. 2010;112(4):736–743.
  • Fomekong E, Duprez T, Docquier MA, et al. Intraoperative 3T MRI for pituitary macroadenoma resection: initial experience in 73 consecutive patients. Clin Neurol Neurosurg. 2014;126:143–149.
  • Schwartz TH. Intraoperative magnetic resonance imaging and pituitary surgery. J Neurosurg. 2014;120(2):342–343.
  • Patel KS, Yao Y, Wang R, et al. Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery. Pituitary. 2015. [Epub ahead of print].
  • Raheja A, Tandon V, Suri A, et al. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures. J Clin Neuroscience. 2015;22(8):1326–1331.
  • Fuminari K, Hideki A, Manabu O, et al. Extended endoscopic endonasal surgery using three-dimensional endoscopy in the intra-operative MRI suite for supra-diaphragmatic ectopic pituitary adenoma. Turk Neurosurg. 2015;25(3):503–507.
  • Wu JS, Shou XF, Yao CJ, et al. Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery. 2009;65(1):63–70. discussion 70-61
  • Czyz M, Tabakow P, Lechowicz-Glogowska B, et al. Prospective study on the efficacy of low-field intraoperative magnetic resonance imaging in neurosurgical operations. Neurol Neurochir Pol. 2011;45(3):226–234.
  • Tabakow P, Czyz M, Jarmundowicz W, et al. Surgical treatment of pituitary adenomas using low-field intraoperative magnetic resonance imaging. Adv Clin Exp Medicine: Off Wroclaw Med Univ. 2012;21(4):495–503.
  • Ginat DT, Swearingen B, Curry W, et al. 3 Tesla intraoperative MRI for brain tumor surgery. J Magn Reson Imaging. 2014;39(6):1357–1365.
  • Pergolizzi RS Jr, Nabavi A, Schwartz RB, et al. Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J Magn Reson Imaging. 2001;13(1):136–141.
  • Berkmann S, Fandino J, Muller B, et al. Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir. 2012;154(4):639–647.
  • Hlavica M, Bellut D, Lemm D, et al. Impact of ultra-low-field intraoperative magnetic resonance imaging on extent of resection and frequency of tumor recurrence in 104 surgically treated nonfunctioning pituitary adenomas. World Neurosurg. 2013;79(1):99–109.
  • Ramm-Pettersen J, Berg-Johnsen J, Hol PK, et al. Intra-operative MRI facilitates tumour resection during trans-sphenoidal surgery for pituitary adenomas. Acta Neurochir. 2011;153(7):1367–1373.
  • Nimsky C, Von Keller B, Ganslandt O, et al. Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery. 2006;59(1):105–114. discussion 105-114.
  • Berkmann S, Schlaffer S, Nimsky C, et al. Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. Acta Neurochir. 2014;156(12):2233–2243. discussion 2243
  • Berkmann S, Schlaffer S, Nimsky C, et al. Intraoperative high-field MRI for transsphenoidal reoperations of nonfunctioning pituitary adenoma. J Neurosurg. 2014;121(5):1166–1175.
  • Coburger J, Konig R, Seitz K, et al. Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg. 2014;120(2):346–356.
  • Li J, Cong Z, Ji X, et al. Application of intraoperative magnetic resonance imaging in large invasive pituitary adenoma surgery. Asian J Surgery/Asian Surg Assoc. 2015;38(3):168–173.
  • Hughes JD, Fattahi N, Van Gompel J, et al Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery. 2015;77(4):653–659.
  • Murphy MC, Huston J 3rd, Glaser KJ, et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013;118(3):643–648.
  • Kashimura H, Inoue T, Ogasawara K, et al. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg. 2007;107(4):784–787.
  • Streitberger KJ, Reiss-Zimmermann M, Freimann FB, et al. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. Plos One. 2014;9(10):e110588.
  • Zorgani A, Souchon R, Dinh AH, et al. Brain palpation from physiological vibrations using MRI. Proc Natl Acad Sci U S A. 2015;112(42):12917–12921.
  • McGrath DM, Ravikumar N, Wilkinson ID, et al. Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy. Magn Reson Med. 2015. [Epub ahead of print].
  • Huston J 3rd, Murphy MC, Boeve BF, et al. Magnetic resonance elastography of frontotemporal dementia. J Magn Reson Imaging. 2015. 2016;43(2):474–478.
  • Liu JT, Meza D, Sanai N. Trends in fluorescence image-guided surgery for gliomas. Neurosurgery. 2014;75(1):61–71.
  • Eljamel MS, Leese G, Moseley H. Intraoperative optical identification of pituitary adenomas. J Neurooncol. 2009;92(3):417–421.
  • Marbacher S, Klinger E, Schwyzer L, et al. Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg Focus. 2014;36(2):E10.
  • Sanai N, Snyder LA, Honea NJ, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 2011;115(4):740–748.
  • Kabasawa H, Masutani Y, Aoki S, et al. 3T PROPELLER diffusion tensor fiber tractography: a feasibility study for cranial nerve fiber tracking. Radiat Med. 2007;25(9):462–466.
  • Song F, Hou Y, Sun G, et al. In vivo visualization of the facial nerve in patients with acoustic neuroma using diffusion tensor imaging-based fiber tracking. J Neurosurg. 2016;1–8. [Epub ahead of print].
  • Smith TR, Hulou MM, Huang KT, et al. Complications after transsphenoidal surgery for patients with Cushing’s disease and silent corticotroph adenomas. Neurosurg Focus. 2015;38(2):E12.
  • Patil CG, Veeravagu A, Prevedello DM, et al. Outcomes after repeat transsphenoidal surgery for recurrent Cushing’s disease. Neurosurgery. 2008;63(2):266–270. discussion 270-261
  • De Tommasi C, Vance ML, Okonkwo DO, et al. Surgical management of adrenocorticotropic hormone-secreting macroadenomas: outcome and challenges in patients with Cushing’s disease or Nelson’s syndrome. J Neurosurg. 2005;103(5):825–830.
  • Duchin Y, Abosch A, Yacoub E, et al. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. Plos One. 2012;7(5):e37328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.