30
Views
2
CrossRef citations to date
0
Altmetric
Review

PI(3)K–Akt–mTOR pathway as a potential therapeutic target in neuroendocrine tumors

, , &
Pages 207-222 | Published online: 10 Jan 2014

References

  • Rindi G, Kloppel G, Alhman H et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch.449, 395–401 (2006).
  • Rindi G, Kloppel G, Couvelard A et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch.451, 757–762 (2007).
  • Modlin IM, Champaneria MC, Chan AK, Kidd M. A three-decade analysis of 3,911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am. J. Gastroenterol.102, 1464–1473 (2007).
  • Falconi M, Plockinger U, Kwekkeboom DJ et al. Well-differentiated pancreatic nonfunctioning tumors/carcinoma. Neuroendocrinology84, 196–211 (2006).
  • Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr. Rev.25, 458–511 (2004).
  • Arnold R, Rinke A, Schmidt C, Hofbauer L. Endocrine tumours of the gastrointestinal tract: chemotherapy. Best Pract. Res. Clin. Gastroenterol.19, 649–656 (2005).
  • Ramage JK, Davies AH, Ardill J et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut54(Suppl. 4), iv1–iv16 (2005).
  • Oberg K. Management of neuroendocrine tumours. Ann. Oncol.15(Suppl. 4), iv293–iv298 (2004).
  • Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology128, 1717–1751 (2005).
  • Levy-Toledano R, Taouis M, Blaettler DH, Gorden P, Taylor SI, Insulin-induced activation of phosphatidyl inositol 3-kinase. Demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells. J. Biol. Chem.269, 31178–31182 (1994).
  • Wu H, Windmiller DA, Wang L, Backer JM, YXXM motifs in the PDGF-b receptor serve dual roles as phosphoinositide 3-kinase binding motifs and tyrosine-based endocytic sorting signals. J. Biol. Chem.278, 40425–40428 (2003).
  • Backer JM, Myers MG Jr, Shoelson SE et al. Phosphatidylinositol 3´-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J.11, 3469–3479 (1992).
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol.5, 375–386 (2005).
  • Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA96, 4240–4245 (1999).
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer2, 489–501 (2002).
  • Choi Y, Zhang J, Murga C et al. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene21, 5289–5300 (2002).
  • Janssens V, Goris J, Van Hoof C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev.15, 34–41 (2005).
  • Liu W, Akhand AA, Takeda K et al. Protein phosphatase 2A-linked and -unlinked caspase-dependent pathways for downregulation of Akt kinase triggered by 4-hydroxynonenal. Cell Death Differ.10, 772–781 (2003).
  • Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem.280, 40406–40416 (2005).
  • Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem.279, 41189–41196 (2004).
  • Viniegra JG, Martinez N, Modirassari P et al. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J. Biol. Chem.280, 4029–4036 (2005).
  • Persad S, Attwell S, Gray V et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem.276, 27462–27469 (2001).
  • Partovian C, Simons M. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Ca in endothelial cells. Cell Signal.16, 951–957 (2004).
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science307, 1098–1101 (2005).
  • Scheid MP, Marignani PA, Woodgett JR. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol. Cell. Biol.22, 6247–6260 (2002).
  • Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell18, 13–24 (2005).
  • Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci.29, 233–242 (2004).
  • Di Maira G, Salvi M, Arrigoni G et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ.12, 668–677 (2005).
  • Pearl LH. Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr. Opin. Genet. Dev.15, 55–61 (2005).
  • Stambolic V, Woodgett JR. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol.16, 461–466 (2006).
  • Mendoza MC, Blenis J. PHLPPing it off: phosphatases get in the Akt. Mol. Cell25, 798–800 (2007).
  • Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA84, 5034–5037 (1987).
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell129, 1261–1274 (2007).
  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol.5, 578–581 (2003).
  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr. Biol.15, 702–713 (2005).
  • Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem.275, 7416–7423 (2000).
  • Yonezawa K, Yoshino KI, Tokunaga C, Hara K. Kinase activities associated with mTOR. Curr. Top. Microbiol. Immunol.279, 271–282 (2004).
  • Perry J, Kleckner N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell112, 151–155 (2003).
  • Yang Q, Guan KL. Expanding mTOR signaling. Cell Res.17, 666–681 (2007).
  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr. Opin. Cell. Biol.17, 596–603 (2005).
  • Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin. Cancer Res..13, 3109–3114 (2007).
  • Hara K, Maruki Y, Long X et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002).
  • Guertin DA, Stevens DM, Thoreen CC et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa, but not S6K1. Dev. Cell11, 859–871 (2006).
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441, 424–430 (2006).
  • Rosenwald IB, Kaspar R, Rousseau D et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.270, 21176–21180 (1995).
  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl Acad. Sci. USA93, 1065–1070 (1996).
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov.5, 671–688 (2006).
  • Rocha S. Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem. Sci.32, 389–397 (2007).
  • Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5´TOP mRNA translation through inhibition of p70s6k. EMBO J.16, 3693–3704 (1997).
  • Schwab MS, Kim SH, Terada N et al. p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol. Cell. Biol.19, 2485–2494 (1999).
  • Janus A, Robak T, Smolewski P. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol. Biol. Lett.10, 479–498 (2005).
  • Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim. Biophys. Acta1784(1), 150–158 (2008).
  • Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol. Cancer Ther.4, 1533–1540 (2005).
  • Haruta T, Uno T, Kawahara J et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol. Endocrinol.14, 783–794 (2000).
  • O’Reilly KE, Rojo F, She BQ et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66, 1500–1508 (2006).
  • Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol.14, 1650–1656 (2004).
  • Harrington LS, Findlay GM, Gray A et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol.166, 213–223 (2004).
  • Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem.280, 26089–26093 (2005).
  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40, Nat. Cell Biol.9, 316–323 (2007).
  • Sancak Y, Thoreen CC, Peterson RT et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell25, 903–915 (2007).
  • Pearce LR, Huang X, Boudeau J et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J.405, 513–522 (2007).
  • Woo SY, Kim DH, Jun BC et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor b expression and signaling. J. Biol. Chem.282, 25604–25612 (2007).
  • Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev.20, 2820–2832 (2006).
  • Han EK, Leverson JD, McGonigal T et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene26, 5655–5661 (2007).
  • Jacinto E, Loewith R, Schmidt A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol.6, 1122–1128 (2004).
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell124, 471–484 (2006).
  • Luo J, Manning BD, Cantley LC. Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell4, 257–262 (2003).
  • Sawyers CL. Will kinase inhibitors have a dark side? N. Engl. J. Med.355, 313–315 (2006).
  • Shah T, Hochhauser D, Frow R, Quaglia A, Dhillon AP, Caplin ME. Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J. Neuroendocrinol.18, 355–360 (2006).
  • Wang L, Ignat A, Axiotis CA. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl. Immunohistochem. Mol. Morphol.10, 139–146 (2002).
  • Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro–entero–pancreatic system. Int. J. Cancer120, 2157–2164 (2007).
  • Speel EJ, Richter J, Moch H et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am. J. Pathol.155, 1787–1794 (1999).
  • Perren A, Komminoth P, Saremaslani P et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol.157, 1097–1103 (2000).
  • Chung DC, Brown SB, Graeme-Cook F et al. Localization of putative tumor suppressor loci by genome-wide allelotyping in human pancreatic endocrine tumors. Cancer Res.58, 3706–3711 (1998).
  • Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract. Res. Clin. Endocrinol. Metab.21, 163–172 (2007).
  • Verhoef S, van Diemen-Steenvoorde R, Akkersdijk LW et al. Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur. J. Pediatr.158, 284–287 (1999).
  • Eledrisi MS, Stuart CA, Alshanti M. Insulinoma in a patient with tuberous sclerosis: is there an association? Endocr. Pract.8, 109–112 (2002).
  • Swinburn BA, Yeong ML, Lane MR, Nicholson GI, Holdaway IM. Neurofibromatosis associated with somatostatinoma: a report of two patients. Clin. Endocrinol. (Oxf.)28, 353–359 (1988).
  • van Basten JP, van Hoek B, de Bruine A, Arends JW, Stockbrugger RW. Ampullary carcinoid and neurofibromatosis: case report and review of the literature. Neth. J. Med.44, 202–206 (1994).
  • Reichardt M, Rexroth W, Hasslacher C. [Von Recklinghausen type I neurofibromatosis and neuroendocrine tumor (somatostatinoma) in a 50-year-old woman]. Med. Klin. (Munich)93, 550–553 (1998).
  • Calender A. Molecular genetics of neuroendocrine tumors. Digestion62(Suppl. 1), 3–18 (2000).
  • Wulbrand U, Remmert G, Zofel P, Wied M, Arnold R, Fehmann HC. mRNA expression patterns of insulin-like growth factor system components in human neuroendocrine tumours. Eur. J. Clin. Invest.30, 729–739 (2000).
  • Wulbrand U, Wied M, Zofel P, Goke B, Arnold R, Fehmann H. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur. J. Clin. Invest.28, 1038–1049 (1998).
  • Nilsson O, Wangberg B, Theodorsson E, Skottner A, Ahlman H. Presence of IGF-I in human midgut carcinoid tumours – an autocrine regulator of carcinoid tumour growth? Int. J. Cancer51, 195–203 (1992).
  • La Rosa S, Uccella S, Capella C, Erba S, Sessa F. Localization of hepatocyte growth factor and its receptor met in endocrine cells and related tumors of the gut and pancreas: an immunohistochemical study. Endocr. Pathol.11, 315–329 (2000).
  • Chaudhry A, Papanicolaou V, Oberg K, Heldin CH, Funa K. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res.52, 1006–1012 (1992).
  • Welin S, Fjallskog ML, Saras J, Eriksson B, Janson ET. Expression of tyrosine kinase receptors in malignant midgut carcinoid tumors. Neuroendocrinology84, 42–48 (2006).
  • Funa K, Papanicolaou V, Juhlin C et al. Expression of platelet-derived growth factor b-receptors on stromal tissue cells in human carcinoid tumors. Cancer Res.50, 748–753 (1990).
  • Krishnamurthy S, Dayal Y. Immunohistochemical expression of transforming growth factor a and epidermal growth factor receptor in gastrointestinal carcinoids. Am. J. Surg. Pathol.21, 327–333 (1997).
  • Nilsson O, Wangberg B, Kolby L, Schultz GS, Ahlman H. Expression of transforming growth factor a and its receptor in human neuroendocrine tumours. Int. J. Cancer60, 645–651 (1995).
  • Papouchado B, Erickson LA, Rohlinger AL et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod. Pathol.18, 1329–1335 (2005).
  • La Rosa S, Uccella S, Erba S, Capella C, Sessa F. Immunohistochemical detection of fibroblast growth factor receptors in normal endocrine cells and related tumors of the digestive system. Appl. Immunohistochem. Mol. Morphol.9, 319–328 (2001).
  • Bordi C, Falchetti A, Buffa R et al. Production of basic fibroblast growth factor by gastric carcinoid tumors and their putative cells of origin. Hum. Pathol.25, 175–180 (1994).
  • Peghini PL, Iwamoto M, Raffeld M et al. Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin. Cancer Res.8, 2273–2285 (2002).
  • von Wichert G, Jehle PM, Hoeflich A et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res.60, 4573–4581 (2000).
  • Terris B, Scoazec JY, Rubbia L et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology32, 133–138 (1998).
  • La Rosa S, Uccella S, Finzi G, Albarello L, Sessa F, Capella C. Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: correlation with microvessel density and clinicopathologic features. Hum. Pathol.34, 18–27 (2003).
  • Zhang J, Jia Z, Li Q et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer109, 1478–1486 (2007).
  • Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J.19, 342–353 (2005).
  • Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J. Biol. Chem.279, 45643–45651 (2004).
  • Hutson TE. Targeted therapy for renal cell carcinoma: a new treatment paradigm. Proc. (Bayl. Univ. Med. Cent.)20, 244–248 (2007).
  • Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel–Lindau tumor suppressor protein. Cancer Res.56, 2299–2301 (1996).
  • Stratmann R, Krieg M, Haas R, Plate KH. Putative control of angiogenesis in hemangioblastomas by the von Hippel–Lindau tumor suppressor gene. J. Neuropathol. Exp. Neurol.56, 1242–1252 (1997).
  • Hammel PR, Vilgrain V, Terris B et al. Pancreatic involvement in von Hippel–Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel–Lindau. Gastroenterology119, 1087–1095 (2000).
  • Zhao J, Moch H, Scheidweiler FA et al. Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer32, 364–372 (2001).
  • Rigaud G, Missiaglia E, Moore SP et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res.61, 285–292 (2001).
  • Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol. Oncol. Clin. North Am.21, 575–581 (2007).
  • Hopfner M, Baradari V, Huether A, Schofl C, Scherubl H. The insulin-like growth factor receptor 1 is a promising target for novel treatment approaches in neuroendocrine gastrointestinal tumours. Endocr. Relat. Cancer13, 135–149 (2006).
  • Hopfner M, Sutter AP, Gerst B, Zeitz M, Scherubl H. A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br. J. Cancer.89, 1766–1775 (2003).
  • Hobday TJ, Holen K, Donehower R et al. A Phase II trial of gefitinib in patients (pts) with progressive metastatic neuroendocrine tumors (NET): a Phase II Consortium (P2C) study. J. Clin. Oncol.24, (2006) (Abstract 4043).
  • Lankat-Buttgereit B, Horsch D, Barth P, Arnold R, Blocker S, Goke R. Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion71, 131–140 (2005).
  • Yao JC, Zhang JX, Rashid A et al. Clinical and In vivo studies of imatinib in advanced carcinoid tumors. Clin. Cancer Res.13, 234–240 (2007).
  • Karhoff D, Sauer S, Schrader J et al. Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology85, 45–53 (2007).
  • Hobday TJ, Rubin J, Holen K et al. MC044h, a Phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a Phase II Consortium (P2C) study. J. Clin. Oncol.25, (2007) (Abstract 4504).
  • Wood JM, Bold G, Buchdunger E et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res.60, 2178–2189 (2000).
  • Anthony LB, McCall J, Nunez J, O’Dorisio T, O’Dorisio S. An open-label Phase II clinical trial of PTK787 in patients with progressive neuroendocrine cancer. J. Clin. Oncol.25 (2007) (Abstract 14127).
  • Mendel DB, Laird AD, Xin X et al.In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res.9, 327–337 (2003).
  • Fiedler W, Mesters R, Tinnefeld H et al. A Phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood102, 2763–2767 (2003).
  • Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM. SU11248 inhibits KIT and platelet-derived growth factor receptor b in preclinical models of human small cell lung cancer. Mol. Cancer Ther.2, 471–478 (2003).
  • Abrams TJ, Murray LJ, Pesenti E et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol. Cancer Ther.2, 1011–1021 (2003).
  • Murray LJ, Abrams TJ, Long RK et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin. Exp. Metastasis20, 757–766 (2003).
  • Kulke M, Lenz HJ, Meropol JN et al. A Phase 2 study to evaluate the efficacy and safety of SU11248 in patients (pts) with unresectable neuroendocrine tumors (NETs)J. Clin. Oncol.23, 4008 (2005) (Abstract).
  • Bello C, Deprimo SE, Friece C et al. Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. J. Clin. Oncol.24, (2006) (Abstract 4045).
  • Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB. In vivo and in vivo ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin. Cancer Res.6, 880–886 (2000).
  • von Wichert G, Haeussler U, Greten RF et al. Regulation of cyclin D1 expression by autocrine IGF-I in human BON neuroendocrine tumour cells. Oncogene24, 1284–1289 (2005).
  • Garlich JR, De P, Dey N et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res.68, 206–215 (2008).
  • Giamas G, Stebbing J, Vorgias CE, Knippschild U. Protein kinases as targets for cancer treatment. Pharmacogenomics8, 1005–1016 (2007).
  • Momota H, Nerio E, Holland EC. Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res.65, 7429–7435 (2005).
  • Hideshima T, Catley L, Yasui H et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vivo and in vivo cytotoxicity in human multiple myeloma cells. Blood107, 4053–4062 (2006).
  • Rahmani M, Reese E, Dai Y et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res.65, 2422–2432 (2005).
  • Vink SR, Lagerwerf S, Mesman E et al. Radiosensitization of squamous cell carcinoma by the alkylphospholipid perifosine in cell culture and xenografts. Clin. Cancer Res.12, 1615–1622 (2006).
  • Argiris A, Cohen E, Karrison T et al. A Phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol. Ther.5, 766–770 (2006).
  • Knowling M, Blackstein M, Tozer R et al. A Phase II study of perifosine (D-21226) in patients with previously untreated metastatic or locally advanced soft tissue sarcoma: a National Cancer Institute of Canada Clinical Trials Group trial. Invest. New Drugs24, 435–439 (2006).
  • Posadas EM, Gulley J, Arlen MP et al. A Phase II study of perifosine in androgen independent prostate cancer. Cancer Biol. Ther.4, 1133–1137 (2005).
  • Ernst DS, Eisenhauer E, Wainman N et al. Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest. New Drugs23, 569–575 (2005).
  • Marsh Rde M, Rocha Lima CM, Levy DE, Mitchell EP, Rowland KM Jr, Benson AB 3rd. A Phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am. J. Clin. Oncol.30, 26–31 (2007).
  • Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo)28, 721–726 (1975).
  • Busca R, Bertolotto C, Ortonne JP, Ballotti R. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem.271, 31824–31830 (1996).
  • Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res.59, 3581–3587 (1999).
  • Neshat MS, Mellinghoff IK, Tran C et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR, Proc. Natl Acad. Sci. USA98, 10314–10319 (2001).
  • Wendel HG, Malina A, Zhao Z et al. Determinants of sensitivity and resistance to rapamycin–chemotherapy drug combinations in vivo. Cancer Res.66, 7639–7646 (2006).
  • Duran I, Kortmansky J, Singh D et al. A Phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br. J. Cancer.95, 1148–1154 (2006).
  • Zitzmann K, De Toni EN, Brand S et al. The novel mTOR inhibitor RAD001, (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology85, 54–60 (2007).
  • Grozinsky-Glasberg S, Franchi G, Teng M et al. Octreotide and the mTOR inhibitor RAD001, (Everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell line. Neuroendocrinology DOI: 10.1159/000111501 (2007) (Epub ahead of print).
  • Hörsch D, Tielke S. Expression and activation of mTOR in neuroendocrine tumors. Effects of mTOR inhibition by RAD001 upon growth, cell cycle regulation and signalling in neuroendocrine cell lines. J. Clin. Oncol.25 (2007) (Abstract 10570).
  • Yao JC, Phan A, Chang ZD et al. Phase II study of RAD001, (everolimus) and depot octreotide (sandostatin LAR) in advanced low grade neuroendocrine carcinoma (LGNET). J. Clin. Oncol.25 (2007) (Abstract 4503).
  • Sun SY, Rosenberg LM, Wang X et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res.65, 7052–7058 (2005).
  • Fan QW, Cheng CK, Nicolaides PT et al. A dual phosphoinositide-3-kinase a/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res.67, 7960–7965 (2007).
  • Azzariti A, Porcelli L, Gatti G, Nicolin A, Paradiso A. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem. Pharmacol.75, 1035–1044 (2008).
  • Masiello D, Mohi MG, McKnight CN et al. Combining an mTOR antagonist and receptor tyrosine kinase inhibitors for the treatment of prostate cancer. Cancer Biol. Ther.6, 195–201 (2007).
  • Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev.26, 611–621 (2007).
  • Mabuchi S, Altomare DA, Cheung M et al. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin. Cancer Res.13, 4261–4270 (2007).
  • Beuvink I, Boulay A, Fumagalli S et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell120, 747–759 (2005).
  • Cao C, Subhawong T, Albert MJ et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res.66, 10040–10047 (2006).
  • Albert JM, Kim KW, Cao C, Lu B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol. Cancer Ther.5, 1183–1189 (2006).
  • Shinohara ET, Cao C, Niermann K et al. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene24, 5414–5422 (2005).
  • Panner A, James CD, Berger MS, Pieper RO. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol. Cell. Biol.25, 8809–8823 (2005).
  • Shrader M, Pino MS, Lashinger L et al. Gefitinib reverses TRAIL resistance in human bladder Cancer Cell. lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression. Cancer Res.67, 1430–1435 (2007).
  • Uchida M, Iwase M, Takaoka S et al. Enhanced susceptibility to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in oral squamous cell carcinoma cells treated with phosphatidylinositol 3-kinase inhibitors. Int. J. Oncol.30, 1163–1171 (2007).
  • ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine tumors. Neuroendocrinology84(3) (2006).
  • ENETS Consensus Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumors. Neuroendocrinology87(1) (2008).
  • Ishikubo T, Akagi K, Kurosumi M et al. Immunohistochemical and mutational analysis of c-kit in gastrointestinal neuroendocrine cell carcinoma. Jpn. J. Clin. Oncol.36, 494–498 (2006).
  • Ferrari L, Della Torre S, Collini P et al. Kit protein (CD117) and proliferation index (Ki-67) evaluation in well and poorly differentiated neuroendocrine tumors. Tumori92, 531–535 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.