43
Views
2
CrossRef citations to date
0
Altmetric
Special Report

HIF-1-regulated glucose metabolism in the control of apoptosis signaling

Pages 303-308 | Published online: 10 Jan 2014

References

  • Semenza GL, Agani F, Feldser D et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv. Exp. Med. Biol.475, 123–130 (2000).
  • Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer2(1), 38–47 (2002).
  • Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev.17(1), 71–77 (2007).
  • Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol.64(5–6), 993ndash;998 (2002).
  • Hirota K, Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem. Biophys. Res. Commun.338(1), 610–616 (2005).
  • Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399(6733), 271–275 (1999).
  • Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA95(14), 7987–7992 (1998).
  • Majumder PK, Febbo PG, Bikoff R et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med.10(6), 594–601 (2004).
  • Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ.12(7), 363–369 (2001).
  • Cramer T, Yamanishi Y, Clausen BE et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell112(5), 645–657 (2003).
  • Isaacs JS, Jung YJ, Mole DR et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell8(2), 143–153 (2005).
  • Pollard PJ, Spencer-Dene B, Shukla D et al. Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell11(4), 311–319 (2007).
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3(10), 721–732 (2003).
  • Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat. Rev. Drug Discov.2(10), 803–811 (2003).
  • Zhong H, De Marzo AM, Laughner E et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res.59(22), 5830–5835 (1999).
  • Akakura N, Kobayashi M, Horiuchi I et al. Constitutive expression of hypoxia-inducible factor-1α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res.61(17), 6548–6554 (2001).
  • Piret J-P, Lecocq C, Toffoli S, Ninane N, Raes M, Michiels C. Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp. Cell. Res.295(2), 340–349 (2004).
  • Zhang Q, Zhang Z-F, Rao JY et al. Treatment with siRNA and antisense oligonucleotides targeted to HIF-1α induced apoptosis in human tongue squamous cell carcinomas. Int. J. Cancer111(6), 849–857 (2004).
  • Kim J-Y, Ahn H-J, Ryu J-H, Suk K, Park J-H. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J. Exp. Med.199(1), 113–124 (2004).
  • Kim M, Park S-Y, Pai H-S, Kim T-H, Billiar TR, Seol D-W. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res.64(12), 4078–4081 (2004).
  • Dong Z, Wang JZ, Yu F, Venkatachalam MA. Apoptosis-resistance of hypoxic cells: multiple factors involved and a role for IAP-2. Am. J. Pathol.163(2), 663–671 (2003).
  • Kilic M, Kasperczyk H, Fulda S, Debatin KM. Role of hypoxia inducible factor-1α in modulation of apoptosis resistance. Oncogene26(14), 2027–2038 (2007).
  • Erler JT, Cawthorne CJ, Williams KJ et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol.24(7), 2875–2889 (2004).
  • Bacon AL, Harris AL. Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann. Med.36(7), 530–539 (2004).
  • Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol.57(10), 1009–1014 (2004).
  • Carmeliet P, Dor Y, Herbert JM et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature394(6692), 485–490 (1998).
  • Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl Acad. Sci. USA97(16), 9082–9087 (2000).
  • Guo K, Searfoss G, Krolikowski D et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ.8(4), 367–376 (2001).
  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res.61(18), 6669–6673 (2001).
  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol.27(17), 6229–6242 (2007).
  • Azad MB, Chen Y, Henson ES et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy4(2), 195–204 (2008).
  • Zhang H, Bosch-Marce M, Shimoda LA et al. Mitochondrial autophagy is a HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem.(2008) (Epub ahead of print).
  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol.8(9), 741–752 (2007).
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell132(1), 27–42 (2008).
  • Park S-Y, Billiar TR, Seol D-W. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem. Biophys. Res. Commun.291(1), 150–153 (2002).
  • Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem.276(46), 43407–43412 (2001).
  • Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1α, causing glycolysis shutdown and cell death. Cancer Res.65(3), 999–1006 (2005).
  • Kim J-W, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res.66(18), 8927–8930 (2006).
  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer4(11), 891–899 (2004).
  • Discher DJ, Bishopric NH, Wu X, Peterson CA, Webster KA. Hypoxia regulates β-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J. Biol. Chem.273(40), 26087–26093 (1998).
  • Murphy BJ, Andrews GK, Bittel D et al. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res.59(6), 1315–1322 (1999).
  • Hochachka PW, Lutz PL. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol.130(4), 435–459 (2001).
  • Webster KA, Discher DJ, Hernandez OM, Yamashita K, Bishopric NH. A glycolytic pathway to apoptosis of hypoxic cardiac myocytes. Molecular pathways of increased acid production. Adv. Exp. Med. Biol.475, 161–175 (2000).
  • Kim J-W, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab.3(3), 177–185 (2006).
  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab.3(3), 187–197 (2006).
  • Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl Acad. Sci. USA104(22), 9445–9450 (2007).
  • Plas DR, Thompson CB. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab.13(2), 75–78 (2002).
  • Deberardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab.7(1), 11–20 (2008).
  • Chen J, Zhao S, Nakada K et al. Dominant-negative hypoxia-inducible factor-1α reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol.162(4), 1283–1291 (2003).
  • Lin Z, Weinberg JM, Malhotra R, Merritt SE, Holzman LB, Brosius FC 3rd. GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation. Am. J. Physiol. Endocrinol. Metab.278(5), E958–E966 (2000).
  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev.15(11), 1406–1418 (2001).
  • Majewski N, Nogueira V, Bhaskar P et al. Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16(5), 819–830 (2004).
  • Pastorino JG, Hoek JB. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem.10(16), 1535–1551 (2003).
  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol.23(20), 7315–7328 (2003).
  • Ishitani R, Chuang DM. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl Acad. Sci. USA93(18), 9937–9941 (1996).
  • Dastoor Z, Dreyer JL. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J. Cell Sci.114(Pt 9), 1643–1653 (2001).
  • Shashidharan P, Chalmers-Redman RM, Carlile GW et al. Nuclear translocation of GAPDH–GFP fusion protein during apoptosis. Neuroreport10(5), 1149–1153 (1999).
  • Colell A, Ricci J-E, Tait S et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell129(5), 983–997 (2007).
  • Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today12(19–20), 853–859 (2007).
  • Melillo G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev.26(2), 341–352 (2007).
  • Bjornsti M-A, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer4(5), 335–348 (2004).
  • Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene25(48), 6436–6446 (2006).
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov.5(8), 671–688 (2006).
  • Isaacs JS, Jung Y-J, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem.277(33), 29936–29944 (2002).
  • Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol. Cell25(2), 207–217 (2007).
  • Kaluz S, Kaluzova M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1α C-terminal activation domain. Mol. Cell. Biol.26(15), 5895–5907 (2006).
  • Fath DM, Kong X, Liang D et al. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-α. J. Biol. Chem.281(19), 13612–13619 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.