32
Views
1
CrossRef citations to date
0
Altmetric
Review

Role of HNF-1α and HNF-1β on insulin, IGF-1 and other potential target genes

Pages 441-452 | Published online: 10 Jan 2014

References

  • Courtois G, Morgan JG, Campbell LA, Fourel G, Crabtree GR. Interaction of a liver-specific nuclear factor with the fibrinogen and α-1-antitrypsin promoters. Science238(4827), 688–692 (1987).
  • Cereghini S, Blumenfeld M, Yaniv M. A liver-specific factor essential for albumin transcription differs between differentiated and dedifferentiated rat hepatoma cells. Genes Dev.2(8), 957–974 (1988).
  • Hardon E, Frain M, Paonessa G, Cortese R. Two distinct factors interact with the promoter regions of several liver-specific genes. EMBO J.7(6), 1711–1719 (1988).
  • Frain M, Swart G, Monaci P et al. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell59(1), 145–157 (1989).
  • Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J.10(2), 267–282 (1996).
  • Rey-Campos J, Chouard T, Yaniv M, Cereghini S. vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J.10(6), 1445–1457 (1991).
  • De Simone V, De Magistris L, Lazzaro D et al. LFB3, a heterodimer-forming homeoprotein of the LFB1 family, is expressed in specialized epithelia. EMBO J.10(6), 1435–1443 (1991).
  • Mendel D, Hansen L, Graves M, Conley P, Crabtree G. HNF-1α and HNF-1β (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev.5(6), 1042–1056 (1991).
  • Nicosia A, Monaci P, Tomei L et al. A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell61(7), 1225–1236 (1990).
  • Chouard T, Blumenfeld M, Bach I, Vandekerckhove J, Cereghini S, Yaniv M. A distal dimerization domain is essential for DNA-binding by the atypical HNF1 homeodomain. Nucleic Acids Res.18(19), 5853–5863 (1990).
  • Toniatti C, Monaci P, Nicosia A, Cortese R, Ciliberto G. A bipartite activation domain is responsible for the activity of transcription factor HNF1/LFB1 in cells of hepatic and nonhepatic origin. DNA Cell Biol.12(3), 199–208 (1993).
  • Tronche F, Yaniv M. HNF1, a homeoprotein member of the hepatic transcription regulatory network. Bioessays14(9), 579–587 (1992).
  • Mendel D, Khavari P, Conley P et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science254(5039), 1762–1767 (1991).
  • Soutoglou E, Papafotiou G, Katrakili N, Talianidis I. Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins. J. Biol. Chem.275(17), 12515–12520 (2000).
  • Ban N, Yamada Y, Someya Y et al. Hepatocyte nuclear factor-1α recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes51(5), 1409–1418 (2002).
  • Barbacci E, Chalkiadaki A, Masdeu C et al. HNF1β/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum. Mol. Genet.13(24), 3139–3149 (2004).
  • Kuo C, Conley P, Hsieh C, Francke U, Crabtree G. Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1. Proc. Natl Acad. Sci. USA87(24), 9838–9842 (1990).
  • Ott M, Rey-Campos J, Cereghini S, Yaniv M. vHNF1 is expressed in epithelial cells of distinct embryonic origin during development and precedes HNF1 expression. Mech. Dev.36(1–2), 47–58 (1991).
  • Lazzaro D, De Simone V, De Magistris L, Lehtonen E, Cortese R. LFB1 and LFB3 homeoproteins are sequentially expressed during kidney development. Development114(2), 469–479 (1992).
  • Cereghini S, Ott M, Power S, Maury M. Expression patterns of vHNF1 and HNF1 homeoproteins in early postimplantation embryos suggest distinct and sequential developmental roles. Development116(3), 783–797 (1992).
  • Coffinier C, Barra J, Babinet C, Yaniv M. Expression of the vHNF1/HNF1β homeoprotein gene during mouse organogenesis. Mech. Dev.89(1–2), 211–213 (1999).
  • Haumaitre C, Barbacci E, Jenny M, Ott M, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc. Natl Acad. Sci. USA102(5), 1490–1495 (2005).
  • Nammo T, Yamagata K, Hamaoka R et al. Expression profile of MODY3/HNF-1α protein in the developing mouse pancreas. Diabetologia45(8), 1142–1153 (2002).
  • Maestro M, Boj S, Luco R et al.Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum. Mol. Genet.12(24), 3307–3314 (2003).
  • Nammo T, Yamagata K, Tanaka T et al. Expression of HNF-4α (MODY1), HNF-1β (MODY5), and HNF-1α (MODY3) proteins in the developing mouse pancreas. Gene Expr. Patterns8(2), 96–106 (2008).
  • Welters H, Senkel S, Klein-Hitpass L et al. Conditional expression of hepatocyte nuclear factor-1β, the maturity-onset diabetes of the young-5 gene product, influences the viability and functional competence of pancreatic β-cells. J. Endocrinol.190(1), 171–181 (2006).
  • Pontoglio M, Barra J, Hadchouel M et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell84(4), 575–585 (1996).
  • Pontoglio M, Sreenan S, Roe M et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest.101(10), 2215–2222 (1998).
  • Lee Y, Sauer B, Gonzalez F. Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1α knockout mouse. Mol. Cell. Biol.18(5), 3059–3068 (1998).
  • Shih D, Bussen M, Sehayek E et al. Hepatocyte nuclear factor-1α is an essential regulator of bile acid and plasma cholesterol metabolism. Nat. Genet.27(4), 375–382 (2001).
  • Barbacci E, Reber M, Ott M, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development126(21), 4795–4805 (1999).
  • Coffinier C, Thépot D, Babinet C, Yaniv M, Barra J. Essential role for the homeoprotein vHNF1/HNF1β in visceral endoderm differentiation. Development126(21), 4785–4794 (1999).
  • Wang L, Coffinier C, Thomas M et al. Selective deletion of the Hnf1β (MODY5) gene in β-cells leads to altered gene expression and defective insulin release. Endocrinology145(8), 3941–3949 (2004).
  • Coffinier C, Gresh L, Fiette L et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development129(8), 1829–1838 (2002).
  • Gresh L, Fischer E, Reimann A et al. A transcriptional network in polycystic kidney disease. EMBO J.23(7), 1657–1668 (2004).
  • Sun Z, Hopkins N. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev.15(23), 3217–3229 (2001).
  • Bagnat M, Cheung I, Mostov K, Stainier D. Genetic control of single lumen formation in the zebrafish gut. Nat. Cell Biol.9(8), 954–960 (2007).
  • Vignali R, Poggi L, Madeddu F, Barsacchi G. HNF1(β) is required for mesoderm induction in the Xenopus embryo. Development127(7), 1455–1465 (2000).
  • Aragón F, Vázquez-Echeverría C, Ulloa E et al. vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev. Dyn.234(3), 567–576 (2005).
  • Fajans S, Bell G, Polonsky K. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med.345(13), 971–980 (2001).
  • Ryffel G. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J. Mol. Endocrinol.27(1), 11–29 (2001).
  • Yamagata K, Oda N, Kaisaki P et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature384(6608), 455–458 (1996).
  • Horikawa Y, Iwasaki N, Hara M et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet.17(4), 384–385 (1997).
  • Yamagata K, Furuta H, Oda N et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature384(6608), 458–460 (1996).
  • Stoffers D, Zinkin N, Stanojevic V, Clarke W, Habener J. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet.15(1), 106–110 (1997).
  • Malecki M, Jhala U, Antonellis A et al. Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat. Genet.23(3), 323–328 (1999).
  • Froguel P, Zouali H, Vionnet N et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N. Engl. J. Med.328(10), 697–702 (1993).
  • Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1α (HNF1α) and 4α (HNF4A) in maturity-onset diabetes of the young. Hum. Mutat.27(9), 854–869 (2006).
  • Byrne M, Sturis J, Menzel S et al. Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes45(11), 1503–1510 (1996).
  • Lehto M, Tuomi T, Mahtani M et al. Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J. Clin. Invest.9(4), 582–591 (1997).
  • Frayling T, Evans J, Bulman M et al. β-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes50(Suppl. 1), S94–S100 (2001).
  • Yamada S, Nishigori H, Onda H et al. Identification of mutations in the hepatocyte nuclear factor (HNF)-1α gene in Japanese subjects with IDDM. Diabetes46(10), 1643–1647 (1997).
  • Pearson E, Starkey B, Powell R, Gribble F, Clark P, Hattersley A. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet362(9392), 1275–1281 (2003).
  • Shepherd M, Pearson E, Houghton J, Salt G, Ellard S, Hattersley A. No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care26(11), 3191–3192 (2003).
  • Bingham C, Bulman M, Ellard S et al. Mutations in the hepatocyte nuclear factor-1β gene are associated with familial hypoplastic glomerulocystic kidney disease. Am. J. Hum. Genet.68(1), 219–224 (2001).
  • Kolatsi-Joannou M, Bingham C, Ellard S et al. Hepatocyte nuclear factor-1β: a new kindred with renal cysts and diabetes and gene expression in normal human development. J. Am. Soc. Nephrol.12(10), 2175–2180 (2001).
  • Bingham C, Ellard S, Cole T et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1β mutations. Kidney Int.61(4), 1243–1251 (2002).
  • Bingham C, Ellard S, van’t Hoff W et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1β gene mutation. Kidney Int.63(5), 1645–1651 (2003).
  • Bingham C, Hattersley A. Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1β. Nephrol. Dial. Transplant.19(11), 2703–2708 (2004).
  • Kitanaka S, Miki Y, Hayashi Y, Igarashi T. Promoter-specific repression of hepatocyte nuclear factor (HNF)-1β and HNF-1α transcriptional activity by an HNF-1β missense mutant associated with Type 5 maturity-onset diabetes of the young with hepatic and biliary manifestations. J. Clin. Endocrinol. Metab.89(3), 1369–1378 (2004).
  • Bellanné-Chantelot C, Chauveau D, Gautier J et al. Clinical spectrum associated with hepatocyte nuclear factor-1β mutations. Ann. Intern. Med.140(7), 510–517 (2004).
  • Edghill E, Bingham C, Ellard S, Hattersley A. Mutations in hepatocyte nuclear factor-1β and their related phenotypes. J. Med. Genet.43(1), 84–90 (2006).
  • Ulinski T, Lescure S, Beaufils S et al. Renal phenotypes related to hepatocyte nuclear factor-1β (TCF2) mutations in a pediatric cohort. J. Am. Soc. Nephrol.17(2), 497–503 (2006).
  • Weber S, Moriniere V, Knüppel T et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol.17(10), 2864–2870 (2006).
  • Decramer S, Parant O, Beaufils S et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J. Am. Soc. Nephrol.18(3), 923–933 (2007).
  • Bellanné-Chantelot C, Clauin S, Chauveau D et al. Large genomic rearrangements in the hepatocyte nuclear factor-1β (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes54(11), 3126–3132 (2005).
  • Edghill E, Bingham C, Slingerland A et al. Hepatocyte nuclear factor-1β mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet. Med.23(12), 1301–1306 (2006).
  • Lindner T, Njolstad P, Horikawa Y, Bostad L, Bell G, Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum. Mol. Genet.8(11), 2001–2008 (1999).
  • Bingham C, Ellard S, Allen L et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1β. Kidney Int.57(3), 898–907 (2000).
  • Furuta H, Furuta M, Sanke T et al. Nonsense and missense mutations in the human hepatocyte nuclear factor-1β gene (TCF2) and their relation to Type 2 diabetes in Japanese. J. Clin. Endocrinol. Metab.87(8), 3859–3863 (2002).
  • Pearson E, Badman M, Lockwood C et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1α and -1β mutations. Diabetes Care27(5), 1102–1107 (2004).
  • Brackenridge A, Pearson E, Shojaee-Moradie F, Hattersley A, Russell-Jones D, Umpleby A. Contrasting insulin sensitivity of endogenous glucose production rate in subjects with hepatocyte nuclear factor-1β and -1α mutations. Diabetes55(2), 405–411 (2006).
  • Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide A, Cereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1β/MODY5 mutations. Hum. Mol. Genet.15(15), 2363–2375 (2006).
  • Hattersley A, Pearson E. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, β-cell physiology, and genetics in diabetes. Endocrinology147(6), 2657–2663 (2006).
  • Wild W, Pogge von Strandmann E, Nastos A et al. The mutated human gene encoding hepatocyte nuclear factor 1β inhibits kidney formation in developing Xenopus embryos. Proc. Natl Acad. Sci. USA97(9), 4695–4700 (2000).
  • Bohn S, Thomas H, Turan G et al. Distinct molecular and morphogenetic properties of mutations in the human HNF1β gene that lead to defective kidney development. J. Am. Soc. Nephrol.14(8), 2033–2041 (2003).
  • Yoshiuchi I, Yamagata K, Zhu Q et al. Identification of a gain-of-function mutation in the HNF-1β gene in a Japanese family with MODY. Diabetologia45(1), 154–155 (2002).
  • Thomas H, Senkel S, Erdmann S et al. Pattern of genes influenced by conditional expression of the transcription factors HNF6, HNF4α and HNF1β in a pancreatic β-cell line. Nucleic Acids Res.32(19), e150 (2004).
  • Kitanaka S, Sato U, Igarashi T. Regulation of human insulin, IGF-I, and multidrug resistance protein 2 promoter activity by hepatocyte nuclear factor (HNF)-1β and HNF-1α and the abnormality of HNF-1β mutants. J. Endocrinol.192(1), 141–147 (2007).
  • Bellanné-Chantelot C, Carette C, Riveline J et al. The type and the position of HNF1α mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes57(2), 503–508 (2008).
  • Edghill E, Oram R, Owens M et al. Hepatocyte nuclear factor-1{β} gene deletions – a common cause of renal disease. Nephrol. Dial. Transplant.23(2), 627–635 (2008).
  • Carette C, Vaury C, Barthélémy A et al. Exonic duplication of the hepatocyte nuclear factor-1β gene (transcription factor 2, hepatic) as a cause of maturity onset diabetes of the young type 5. J. Clin. Endocrinol. Metab.92(7), 2844–2847 (2007).
  • Ellard S, Thomas K, Edghill E et al. Partial and whole gene deletion mutations of the GCK and HNF1α genes in maturity-onset diabetes of the young. Diabetologia50(11), 2313–2317 (2007).
  • Wang H, Maechler P, Hagenfeldt K, Wollheim C. Dominant-negative suppression of HNF-1α function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic β-cell line. EMBO J.17(22), 6701–6713 (1998).
  • Guillam M, Hümmler E, Schaerer E et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat. Genet.17(3), 327–330 (1997).
  • Shih D, Screenan S, Munoz K et al. Loss of HNF-1α function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes50(11), 2472–2480 (2001).
  • Yamagata K, Nammo T, Moriwaki M et al. Overexpression of dominant-negative mutant hepatocyte nuclear factor-1α in pancreatic β-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced β-cell proliferation, and diabetes. Diabetes51(1), 114–123 (2002).
  • Hagenfeldt-Johansson K, Herrera P, Wang H, Gjinovci A, Ishihara H, Wollheim C. β-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1α induces a maturity-onset diabetes of the young (MODY)3-like phenotype in transgenic mice. Endocrinology142(12), 5311–5320 (2001).
  • Wang H, Antinozzi P, Hagenfeldt K, Maechler P, Wollheim C. Molecular targets of a human HNF1α mutation responsible for pancreatic β-cell dysfunction. EMBO J.19(16), 4257–4264 (2000).
  • Akpinar P, Kuwajima S, Krützfeldt J, Stoffel M. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic β cell proliferation. Cell Metab.2(6), 385–397 (2005).
  • Fukui K, Yang Q, Cao Y et al. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab.2(6), 373–384 (2005).
  • Yamagata K, Nammo T, Sato Y, Saisho K, Shoda H, Fukui K. The HNF-1α–SNARE connection. Diabetes Obes. Metab.9(Suppl. 2), 40–45 (2007).
  • Gu N, Suzuki N, Takeda J et al. Effect of mutations in HNF-1α and HNF-1β on the transcriptional regulation of human sucrase–isomaltase in Caco-2 cells. Biochem. Biophys. Res. Commun.325(1), 308–313 (2004).
  • Gu N, Adachi T, Matsunaga T et al.Mutant HNF-1α and mutant HNF-1β identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells. Biochem. Biophys. Res. Commun.346(3), 1016–1023 (2006).
  • Senkel S, Lucas B, Klein-Hitpass L, Ryffel G. Identification of target genes of the transcription factor HNF1β and HNF1α in a human embryonic kidney cell line. Biochim. Biophys. Acta1731(3), 179–190 (2005).
  • Hay C, Docherty K. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes55(12), 3201–3213 (2006).
  • Furukawa N, Shirotani T, Nakamaru K, Matsumoto K, Shichiri M, Araki E. Regulation of the insulin gene transcription by glucose. Endocr. J.49(2), 121–130 (2002).
  • Emens L, Landers D, Moss L. Hepatocyte nuclear factor 1α is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc. Natl Acad. Sci. USA89(16), 7300–7304 (1992).
  • Okita K, Yang Q, Yamagata K et al. Human insulin gene is a target gene of hepatocyte nuclear factor-1α (HNF-1α) and HNF-1β. Biochem. Biophys. Res. Commun.263(2), 566–569 (1999).
  • Lee J, Ristow M, Lin X, White M, Magnuson M, Hennighausen L. RIP–Cre revisited, evidence for impairments of pancreatic β-cell function. J. Biol. Chem.281(5), 2649–2653 (2006).
  • Fujimoto K, Sasaki T, Hiki Y et al.In vitro and pathological investigations of MODY5 with the R276X-HNF1β (TCF2) mutation. Endocr. J.54(5), 757–764 (2007).
  • Poll A, Pierreux C, Lokmane L et al. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes55(1), 61–69 (2006).
  • Baker J, Liu J, Robertson E, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell75(1), 73–82 (1993).
  • Liu J, Baker J, Perkins A, Robertson E, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell75(1), 59–72 (1993).
  • Woods K, Camacho-Hübner C, Savage M, Clark A. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med.335(18), 1363–1367 (1996).
  • Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev.22(6), 818–835 (2001).
  • Nolten L, Steenbergh P, Sussenbach J. Hepatocyte nuclear factor 1α activates promoter 1 of the human insulin-like growth factor I gene via two distinct binding sites. Mol. Endocrinol.9(11), 1488–1499 (1995).
  • Kulik V, Kavsan V, van Schaik F, Nolten L, Steenbergh P, Sussenbach J. The promoter of the salmon insulin-like growth factor I gene is activated by hepatocyte nuclear factor 1. J. Biol. Chem.270(3), 1068–1073 (1995).
  • Hügl S, White M, Rhodes C. Insulin-like growth factor I (IGF-I)-stimulated pancreatic β-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J. Biol. Chem.273(28), 17771–17779 (1998).
  • Guo Y, Lu Y, Houle D et al. Pancreatic islet-specific expression of an insulin-like growth factor-I transgene compensates islet cell growth in growth hormone receptor gene-deficient mice. Endocrinology146(6), 2602–2609 (2005).
  • Yang Q, Yamagata K, Fukui K et al. Hepatocyte nuclear factor-1α modulates pancreatic β-cell growth by regulating the expression of insulin-like growth factor-1 in INS-1 cells. Diabetes51(6), 1785–1792 (2002).
  • Maher J, Slitt A, Callaghan T et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1α. Biochem. Pharmacol.72(4), 512–522 (2006).
  • Kikuchi R, Kusuhara H, Hattori N et al. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1α/β and DNA methylation. Mol. Pharmacol.72(6), 1619–1625 (2007).
  • Odom D, Zizlsperger N, Gordon D et al. Control of pancreas and liver gene expression by HNF transcription factors. Science303(5662), 1378–1381 (2004).
  • Odom D, Dowell R, Jacobsen E et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet.39(6), 730–732 (2007).
  • Ferrer J. A genetic switch in pancreatic β-cells: implications for differentiation and haploinsufficiency. Diabetes51(8), 2355–2362 (2002).
  • Hiesberger T, Bai Y, Shao X et al. Mutation of hepatocyte nuclear factor-1β inhibits Pkhd1 gene expression and produces renal cysts in mice. J. Clin. Invest.113(6), 814–825 (2004).
  • Zhang Y, Wada J, Yasuhara A et al. The role for HNF-1β-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PLoS ONE2(5), e414 (2007).
  • Rebouissou S, Vasiliu V, Thomas C et al. Germline hepatocyte nuclear factor 1α and 1β mutations in renal cell carcinomas. Hum. Mol. Genet.14(5), 603–614 (2005).
  • Ma Z, Gong Y, Patel V et al. Mutations of HNF-1β inhibit epithelial morphogenesis through dysregulation of SOCS-3. Proc. Natl Acad. Sci. USA104(51), 20386–20391 (2007).
  • Iwasaki N, Ogata M, Tomonaga O et al. Liver and kidney function in Japanese patients with maturity-onset diabetes of the young. Diabetes Care21(12), 2144–2148 (1998).
  • Montoli A, Colussi G, Massa O et al. Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1β gene: description of a new family with associated liver involvement. Am. J. Kidney Dis.40(2), 397–402 (2002).
  • Beckers D, Bellanné-Chantelot C, Maes M. Neonatal cholestatic jaundice as the first symptom of a mutation in the hepatocyte nuclear factor-1β gene (HNF-1β). J. Pediatr.150(3), 313–314 (2007).
  • Boudreau F, Zhu Y, Traber P. Sucrase-isomaltase gene transcription requires the hepatocyte nuclear factor-1 (HNF-1) regulatory element and is regulated by the ratio of HNF-1α to HNF-1β. J. Biol. Chem.276(34), 32122–32128 (2001).
  • Song Y, Ray K, Liebhaber S, Cooke N. Vitamin D-binding protein gene transcription is regulated by the relative abundance of hepatocyte nuclear factors 1α and 1β. J. Biol. Chem.273(43), 28408–28418 (1998).
  • Párrizas M, Maestro M, Boj S et al. Hepatic nuclear factor 1-α directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol. Cell. Biol.21(9), 3234–3243 (2001).
  • Luco R, Maestro M, del Pozo N, Philbrick W, de la Ossa P, Ferrer J. A conditional model reveals that induction of hepatocyte nuclear factor-1α in Hnf1α-null mutant β-cells can activate silenced genes postnatally, whereas overexpression is deleterious. Diabetes55(8), 2202–2211 (2006).
  • Winckler W, Burtt N, Holmkvist J et al. Association of common variation in the HNF1α gene region with risk of Type 2 diabetes. Diabetes54(8), 2336–2342 (2005).
  • Weedon M, Owen K, Shields B et al. A large-scale association analysis of common variation of the HNF1α gene with Type 2 diabetes in the U.K. Caucasian population. Diabetes54(8), 2487–2491 (2005).
  • Gudmundsson J, Sulem P, Rafnar T et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet.40(3), 281–283 (2008).
  • Furihata T, Satoh T, Yamamoto N, Kobayashi K, Chiba K. Hepatocyte nuclear factor 1α is a factor responsible for the interindividual variation of OATP1β1 mRNA levels in adult Japanese livers. Pharm. Res.24(12), 2327–2332 (2007).
  • Bluteau O, Jeannot E, Bioulac-Sage P et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat. Genet.32(2), 312–315 (2002).
  • Terasawa K, Toyota M, Sagae S et al. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer94(6), 914–921 (2006).
  • Fischer E, Legue E, Doyen A et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet.38(1), 21–23 (2006).
  • Boj S, Parrizas M, Maestro M, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl Acad. Sci. USA98(25), 14481–14486 (2001).
  • Hansen S, Párrizas M, Jensen M et al. Genetic evidence that HNF-1α-dependent transcriptional control of HNF-4α is essential for human pancreatic β cell function. J. Clin. Invest.110(6), 827–833 (2002).
  • Thomas H, Jaschkowitz K, Bulman M et al. A distant upstream promoter of the HNF-4α gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum. Mol. Genet.10(19), 2089–2097 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.