33
Views
4
CrossRef citations to date
0
Altmetric
Review

Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes

&
Pages 473-491 | Published online: 10 Jan 2014

References

  • Brown RS. Minireview: developmental regulation of thyrotropin receptor gene expression in the fetal and newborn thyroid. Endocrinology145(9), 4058–4061 (2004).
  • Claus M, Neumann S, Kleinau G, Krause G, Paschke R. Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J. Mol. Med.84(11), 943–954 (2006).
  • Mizutori Y, Chen CR, McLachlan SM, Rapoport B. The thyrotropin receptor hinge region is not simply a scaffold for the leucine-rich domain but contributes to ligand binding and signal transduction. Mol. Endocrinol.22(5), 1171–1182 (2008).
  • Garcia-Jimenez C, Santisteban P. TSH signalling and cancer. Arq. Bras. Endocrinol. Metabol.51(5), 654–671 (2007).
  • Sanders J, Chirgadze DY, Sanders P et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid17(5), 395–410 (2007).
  • Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol. Endocrinol.16(4), 736–746 (2002).
  • Neumann S, Krause G, Claus M, Paschke R. Structural determinants for g protein activation and selectivity in the second intracellular loop of the thyrotropin receptor. Endocrinology146(1), 477–485 (2005).
  • Latif R, Graves P, Davies TF. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. J. Biol. Chem.277(47), 45059–45067 (2002).
  • Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem.275(3), 2191–2198 (2000).
  • Costa MJ, Song Y, Macours P et al. Sphingolipid-cholesterol domains (lipid rafts) in normal human and dog thyroid follicular cells are not involved in thyrotropin receptor signaling. Endocrinology145(3), 1464–1472 (2004).
  • Kleinau G, Claus M, Jaeschke H et al. Contacts between extracellular loop two and transmembrane helix six determine basal activity of the thyroid-stimulating hormone receptor. J. Biol. Chem.282(1), 518–525 (2007).
  • Baratti-Elbaz C, Ghinea N, Lahuna O et al. Internalization and recycling pathways of the thyrotropin receptor. Mol. Endocrinol.13(10), 1751–1765 (1999).
  • Singh SP, McDonald D, Hope TJ, Prabhakar BS. Upon thyrotropin binding the thyrotropin receptor is internalized and localized to endosome. Endocrinology145(2), 1003–1010 (2004).
  • Frenzel R, Voigt C, Paschke R. The human thyrotropin receptor is predominantly internalized by β-arrestin 2. Endocrinology147(6), 3114–3122 (2006).
  • Caunt CJ, Finch AR, Sedgley KR et al. Arrestin-mediated ERK activation by gonadotropin-releasing hormone receptors: receptor-specific activation mechanisms and compartmentalization. J. Biol. Chem.281(5), 2701–2710 (2006).
  • Ma L, Pei G. β-arrestin signaling and regulation of transcription. J. Cell Sci.120(Pt 2), 213–218 (2007).
  • Lahuna O, Quellari M, Achard C et al. Thyrotropin receptor trafficking relies on the hScrib–βPIX–GIT1–ARF6 pathway. EMBO J.24(7), 1364–1374 (2005).
  • Cabrera-Vera TM, Vanhauwe J, Thomas TO et al. Insights into G protein structure, function, and regulation. Endocr. Rev.24(6), 765–781 (2003).
  • Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J. Cell. Physiol.213(3), 589–602 (2007).
  • Cleator JH, Ravenell R, Kurtz DT, Hildebrandt JD. A dominant negative Gas mutant that prevents thyroid-stimulating hormone receptor activation of cAMP production and inositol 1,4,5-trisphosphate turnover: competition by different G proteins for activation by a common receptor. J. Biol. Chem.279(35), 36601–36607 (2004).
  • Laugwitz KL, Allgeier A, Offermanns S et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl Acad. Sci. USA93(1), 116–120 (1996).
  • Kimura T, Van Keymeulen A, Golstein J et al. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev.22(5), 631–656 (2001).
  • Dremier S, Vandeput F, Zwartkruis FJ et al. Activation of the small G protein Rap1 in dog thyroid cells by both cAMP-dependent and -independent pathways. Biochem. Biophys. Res. Commun.267(1), 7–11 (2000).
  • Suh JM, Song JH, Kim DW et al. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J. Biol. Chem.278(24), 21960–21971 (2003).
  • De Gregorio G, Coppa A, Cosentino C et al. The p85 regulatory subunit of PI3K mediates TSH–cAMP–PKA growth and survival signals. Oncogene26(14), 2039–2047 (2007).
  • Laezza C, Mazziotti G, Fiorentino L et al. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras–MAPK pathway. J. Mol. Med.84(11), 967–973 (2006).
  • Ciullo I, Diez-Roux G, Di Domenico M, Migliaccio A, Avvedimento EV. cAMP signaling selectively influences Ras effectors pathways. Oncogene20(10), 1186–1192 (2001).
  • Cass LA, Meinkoth JL. Ras signaling through PI3K confers hormone-independent proliferation that is compatible with differentiation. Oncogene19(7), 924–932 (2000).
  • Van Keymeulen A, Dumont JE, Roger PP. TSH induces insulin receptors that mediate insulin costimulation of growth in normal human thyroid cells. Biochem. Biophys. Res. Commun.279(1), 202–207 (2000).
  • Vandeput F, Perpete S, Coulonval K, Lamy F, Dumont JE. Role of the different mitogen-activated protein kinase subfamilies in the stimulation of dog and human thyroid epithelial cell proliferation by cyclic adenosine 5´-monophosphate and growth factors. Endocrinology144(4), 1341–1349 (2003).
  • Hochbaum D, Hong K, Barila G, Ribeiro-Neto F, Altschuler DL. Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J. Biol. Chem.283(8), 4464–4468 (2008).
  • Oki N, Takahashi SI, Hidaka H, Conti M. Short term feedback regulation of cAMP in FRTL-5 thyroid cells. Role of PDE4D3 phosphodiesterase activation. J. Biol. Chem.275(15), 10831–10837 (2000).
  • Takahashi SI, Nedachi T, Fukushima T et al. Long-term hormonal regulation of the cAMP-specific phosphodiesterases in cultured FRTL-5 thyroid cells. Biochim. Biophys. Acta1540(1), 68–81 (2001).
  • Kawasaki H, Springett GM, Mochizuki N et al. A family of cAMP-binding proteins that directly activate Rap1. Science282(5397), 2275–2279 (1998).
  • Richards JS. New signaling pathways for hormones and cyclic adenosine 3´,5´-monophosphate action in endocrine cells. Mol. Endocrinol.15(2), 209–218 (2001).
  • Dremier S, Milenkovic M, Blancquaert S et al. Cyclic adenosine 3´,5´-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells. Endocrinology148(10), 4612–4622 (2007).
  • De Falco V, Castellone MD, De Vita G et al. RET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase. Cancer Res.67(1), 381–390 (2007).
  • Wang Z, Dillon TJ, Pokala V et al. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol. Cell. Biol.26(6), 2130–2145 (2006).
  • Puskas LG, Juhasz F, Zarva A, Hackler L Jr, Farid NR. Gene profiling identifies genes specific for well-differentiated epithelial thyroid tumors. Cell. Mol. Biol. (Noisy-le-grand)51(2), 177–186 (2005).
  • Miller MJ, Rioux L, Prendergast GV et al. Differential effects of protein kinase A on Ras effector pathways. Mol. Cell. Biol.18(7), 3718–3726 (1998).
  • Fukushima T, Suzuki S, Mashiko M et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene22(41), 6455–6457 (2003).
  • Kimura ET, Nikiforova MN, Zhu Z et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63(7), 1454–1457 (2003).
  • Soares P, Trovisco V, Rocha AS et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene22(29), 4578–4580 (2003).
  • Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res.63(15), 4561–4567 (2003).
  • Williams SF, Smallridge RC. Targeting the ERK pathway: novel therapeutics for thyroid cancer. Curr. Drug Targets Immune Endocr. Metabol. Disord.4(3), 199–220 (2004).
  • Vasko VV, Saji M. Molecular mechanisms involved in differentiated thyroid cancer invasion and metastasis. Curr. Opin. Oncol.19(1), 11–17 (2007).
  • Riesco-Eizaguirre G, Santisteban P. Molecular biology of thyroid cancer initiation. Clin. Transl. Oncol.9(11), 686–693 (2007).
  • Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev. Mol. Diagn.8(1), 83–95 (2008).
  • Derwahl M, Kuemmel M, Goretzki P, Schatz H, Broecker M. Expression of the human TSH receptor in a human thyroid carcinoma cell line that lacks an endogenous TSH receptor: growth inhibition by cAMP. Biochem. Biophys. Res. Commun.191(3), 1131–1138 (1993).
  • Ohta K, Pang XP, Berg L, Hershman JM. Growth inhibition of new human thyroid carcinoma cell lines by activation of adenylate cyclase through the β-adrenergic receptor. J. Clin. Endocrinol. Metab.82(8), 2633–2638 (1997).
  • Portella G, Vitagliano D, Li Z et al. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line. Oncol. Res.10(9), 441–447 (1998).
  • Zaballos MA, Garcia B, Santisteban P. Gβγ dimers released in response to TSH activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells. Mol. Endocrinol.22(5), 1183–1199 (2008).
  • Metcalfe RA, Findlay C, Robertson WR, Weetman AP, Mac Neil S. Differential effect of thyroid-stimulating hormone (TSH) on intracellular free calcium and cAMP in cells transfected with the human TSH receptor. J. Endocrinol.157(3), 415–424 (1998).
  • Calebiro D, de Filippis T, Lucchi S et al. Selective modulation of protein kinase A I and II reveals distinct roles in thyroid cell gene expression and growth. Mol. Endocrinol.20(12), 3196–3211 (2006).
  • Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol.5(12), 959–970 (2004).
  • Kirschner LS, Sandrini F, Monbo J et al. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex. Hum. Mol. Genet.9(20), 3037–3046 (2000).
  • Van Sande J, Lefort A, Beebe S et al. Pairs of cyclic AMP analogs, that are specifically synergistic for type I and type II cAMP-dependent protein kinases, mimic thyrotropin effects on the function, differentiation expression and mitogenesis of dog thyroid cells. Eur. J. Biochem.183(3), 699–708 (1989).
  • Breton MF, Roger PP, Omri B, Dumont JE, Pavlovic-Hournac M. Thyrotropin but not epidermal growth factor down-regulates the isozyme I (PKa I) of cyclic AMP-dependent protein kinases in dog thyroid cells in primary cultures. Mol. Cell. Endocrinol.61(1), 49–55 (1989).
  • Gupte RS, Traganos F, Darzynkiewicz Z, Lee MY. Phosphorylation of RIα by cyclin-dependent kinase CDK 2/cyclin E modulates the dissociation of the RIα–RFC40 complex. Cell Cycle5(6), 653–660 (2006).
  • Arsenijevic T, Degraef C, Dumont JE, Roger PP, Pirson I. A novel partner for D-type cyclins: protein kinase A-anchoring protein AKAP95. Biochem. J.378(Pt 2), 673–679 (2004).
  • Arsenijevic T, Degraef C, Dumont JE, Roger PP, Pirson I. G1/S cyclins interact with regulatory subunit of PKA via A-kinase anchoring protein, AKAP95. Cell Cycle5(11), 1217–1222 (2006).
  • Neary CL, Nesterova M, Cho YS et al. Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene23(54), 8847–8856 (2004).
  • Chaturvedi D, Poppleton HM, Stringfield T, Barbier A, Patel TB. Subcellular localization and biological actions of activated RSK1 are determined by its interactions with subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol.26(12), 4586–4600 (2006).
  • Brown RL, August SL, Williams CJ, Moss SB. AKAP7γ is a nuclear RI-binding AKAP. Biochem. Biophys. Res. Commun.306(2), 394–401 (2003).
  • Woloshin PI, Walton KM, Rehfuss RP, Goodman RH, Cone RD. 3´,5´-cyclic adenosine monophosphate-regulated enhancer binding (CREB) activity is required for normal growth and differentiated phenotype in the FRTL5 thyroid follicular cell line. Mol. Endocrinol.6(10), 1725–1733 (1992).
  • Nguyen LQ, Kopp P, Martinson F et al. A dominant negative CREB (cAMP response element-binding protein) isoform inhibits thyrocyte growth, thyroid-specific gene expression, differentiation, and function. Mol. Endocrinol.14(9), 1448–1461 (2000).
  • Luciani P, Buci L, Conforti B et al. Expression of cAMP response element-binding protein and sodium iodide symporter in benign non-functioning and malignant thyroid tumours. Eur. J. Endocrinol.148(5), 579–586 (2003).
  • Rosenberg D, Groussin L, Jullian E et al. Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann. NY Acad. Sci.968, 65–74 (2002).
  • Johannessen M, Delghandi MP, Moens U. What turns CREB on? Cell Signal.16(11), 1211–1227 (2004).
  • Johannessen M, Moens U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci.12, 1814–1832 (2007).
  • Zhang X, Odom DT, Koo SH et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl Acad. Sci. USA102(12), 4459–4464 (2005).
  • Jung HS, Kim KS, Chung YJ et al. USF inhibits cell proliferation through delay in G2/M phase in FRTL-5 cells. Endocr. J.54(2), 275–285 (2007).
  • Eng C. Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann. NY Acad. Sci.968, 213–221 (2002).
  • Frisk T, Foukakis T, Dwight T et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer35(1), 74–80 (2002).
  • Xing M. Gene methylation in thyroid tumorigenesis. Endocrinology148(3), 948–953 (2007).
  • Garcia-Rostan G, Costa AM, Pereira-Castro I et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res.65(22), 10199–10207 (2005).
  • Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A. Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res.67(3), 959–966 (2007).
  • Weng L, Brown J, Eng C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways. Hum. Mol. Genet.10(3), 237–242 (2001).
  • Mandal M, Kim S, Younes MN et al. The Akt inhibitor KP372–1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br. J. Cancer92(10), 1899–1905 (2005).
  • Porcellini A, Messina S, De Gregorio G et al. The expression of the thyroid-stimulating hormone (TSH) receptor and the cAMP-dependent protein kinase RII β regulatory subunit confers TSH–cAMP-dependent growth to mouse fibroblasts. J. Biol. Chem.278(42), 40621–40630 (2003).
  • Grozovsky R, Morales MM, Carvalho DP. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis. Braz. J. Med. Biol. Res.40(5), 679–686 (2007).
  • Park YJ, Kim TY, Lee SH et al. p66Shc expression in proliferating thyroid cells is regulated by thyrotropin receptor signaling. Endocrinology146(5), 2473–2480 (2005).
  • De Falco V, Guarino V, Malorni L et al. RAI(ShcC/N-Shc)-dependent recruitment of GAB 1 to RET oncoproteins potentiates PI 3-K signalling in thyroid tumors. Oncogene24(41), 6303–6313 (2005).
  • Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J.272(14), 3491–3504 (2005).
  • Iacovelli L, Capobianco L, Salvatore L et al. Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP-dependent protein kinase A-independent mechanism. Mol. Pharmacol.60(5), 924–933 (2001).
  • Mitsutake N, Miyagishi M, Mitsutake S et al. BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC–RAS–BRAF pathway in papillary thyroid carcinogenesis. Endocrinology147(2), 1014–1019 (2006).
  • Groussin L, Fagin JA. Significance of BRAF mutations in papillary thyroid carcinoma: prognostic and therapeutic implications. Nat. Clin. Pract. Endocrinol. Metab.2(4), 180–181 (2006).
  • Ouyang B, Knauf JA, Smith EP et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res.12(6), 1785–1793 (2006).
  • Bongarzone I, Butti MG, Coronelli S et al. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res.54(11), 2979–2985 (1994).
  • Fagin JA. Challenging dogma in thyroid cancer molecular genetics – role of RET/PTC and BRAF in tumor initiation. J. Clin. Endocrinol. Metab.89(9), 4264–4266 (2004).
  • Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit. Rev. Oncol. Hematol.56(1), 47–60 (2005).
  • Coulonval K, Vandeput F, Stein RC et al. Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin. Biochem. J.348(Pt 2), 351–358 (2000).
  • Brewer C, Yeager N, Di Cristofano A. Thyroid-stimulating hormone initiated proliferative signals converge in vivo on the mTOR kinase without activating AKT. Cancer Res.67(17), 8002–8006 (2007).
  • Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res.68(2), 444–449 (2008).
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science307(5712), 1098–1101 (2005).
  • Zeng Z, Sarbassov dos D, Samudio IJ et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood109(8), 3509–3512 (2007).
  • Graff JR, Greenberg VE, Herman JG et al. Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res.58(10), 2063–2066 (1998).
  • Kurihara K, Shimizu S, Chong J et al. Nuclear localization of immunoreactive β-catenin is specific to familial adenomatous polyposis in papillary thyroid carcinoma. Jpn. J. Cancer Res.91(11), 1100–1102 (2000).
  • Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr. Pathol.15(4), 319–327 (2004).
  • Rocha AS, Soares P, Seruca R et al. Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J. Pathol.194(3), 358–366 (2001).
  • Helmbrecht K, Kispert A, von Wasielewski R, Brabant G. Identification of a Wnt/β-catenin signaling pathway in human thyroid cells. Endocrinology142(12), 5261–5266 (2001).
  • Nakashima M, Meirmanov S, Naruke Y et al. Cyclin D1 overexpression in thyroid tumours from a radio-contaminated area and its correlation with Pin1 and aberrant β-catenin expression. J. Pathol.202(4), 446–455 (2004).
  • Ishigaki K, Namba H, Nakashima M et al. Aberrant localization of β-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J. Clin. Endocrinol. Metab.87(7), 3433–3440 (2002).
  • Kremenevskaja N, von Wasielewski R, Rao AS et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene24(13), 2144–2154 (2005).
  • Rezk S, Brynes RK, Nelson V et al. β-catenin expression in thyroid follicular lesions: potential role in nuclear envelope changes in papillary carcinomas. Endocr. Pathol.15(4), 329–337 (2004).
  • Chen AE, Ginty DD, Fan CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature433(7023), 317–322 (2005).
  • Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol. Cell. Biol.25(20), 9063–9072 (2005).
  • Lantsov D, Meirmanov S, Nakashima M et al. Cyclin D1 overexpression in thyroid papillary microcarcinoma: its association with tumour size and aberrant β-catenin expression. Histopathology47(3), 248–256 (2005).
  • Pestell RG, Albanese C, Reutens AT et al. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr. Rev.20(4), 501–534 (1999).
  • Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes. Mol. Cell. Biol.18(2), 753–761 (1998).
  • Rao AS, Kremenevskaja N, Resch J, Brabant G. Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/β-catenin signalling. Eur. J. Endocrinol.153(6), 929–938 (2005).
  • Bockstaele L, Coulonval K, Kooken H, Paternot S, Roger PP. Regulation of CDK4. Cell Div.1, 25 (2006).
  • Bockstaele L, Kooken H, Libert F et al. Regulated activating Thr172 phosphorylation of cyclin-dependent kinase 4(CDK4): its relationship with cyclins and CDK ‘inhibitors’. Mol. Cell. Biol.26(13), 5070–5085 (2006).
  • Coulonval K, Bockstaele L, Paternot S, Dumont JE, Roger PP. The cyclin D3–CDK4–p27kip1 holoenzyme in thyroid epithelial cells: activation by TSH, inhibition by TGFb, and phosphorylations of its subunits demonstrated by two-dimensional gel electrophoresis. Exp. Cell Res.291(1), 135–149 (2003).
  • Yano Y, Kamma H, Matsumoto H et al. Growth suppression of thyroid cancer cells by adenylcyclase activator. Oncol. Rep.18(2), 441–445 (2007).
  • Depoortere F, Van Keymeulen A, Lukas J et al. A requirement for cyclin D3-cyclin-dependent kinase (cdk)-4 assembly in the cyclic adenosine monophosphate-dependent proliferation of thyrocytes. J. Cell Biol.140(6), 1427–1439 (1998).
  • Paternot S, Coulonval K, Dumont JE, Roger PP. Cyclic AMP-dependent phosphorylation of cyclin D3-bound CDK4 determines the passage through the cell cycle restriction point in thyroid epithelial cells. J. Biol. Chem.278(29), 26533–26540 (2003).
  • Van Keymeulen A, Bartek J, Dumont JE, Roger PP. Cyclin D3 accumulation and activity integrate and rank the comitogenic pathways of thyrotropin and insulin in thyrocytes in primary culture. Oncogene18(51), 7351–7359 (1999).
  • Van Keymeulen A, Deleu S, Bartek J, Dumont JE, Roger PP. Respective roles of carbamylcholine and cyclic adenosine monophosphate in their synergistic regulation of cell cycle in thyroid primary cultures. Endocrinology142(3), 1251–1259 (2001).
  • Coulonval K, Maenhaut C, Dumont JE, Lamy F. Phosphorylation of the three Rb protein family members is a common step of the cAMP-, the growth factor, and the phorbol ester-mitogenic cascades but is not necessary for the hypertrophy induced by insulin. Exp. Cell Res.233(2), 395–398 (1997).
  • Dremier S, Coulonval K, Perpete S et al. The role of cyclic AMP and its effect on protein kinase A in the mitogenic action of thyrotropin on the thyroid cell. Ann. NY Acad. Sci.968, 106–121 (2002).
  • Coulonval K, Bockstaele L, Paternot S, Roger PP. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J. Biol. Chem.278(52), 52052–52060 (2003).
  • Paternot S, Dumont JE, Roger PP. Differential utilization of cyclin D1 and cyclin D3 in the distinct mitogenic stimulations by growth factors and TSH of human thyrocytes in primary culture. Mol. Endocrinol.20(12), 3279–3292 (2006).
  • Paternot S, Arsenijevic T, Coulonval K et al. Distinct specificities of pRb phosphorylation by CDK4 activated by cyclin D1 or cyclin D3: differential involvement in the distinct mitogenic modes of thyroid epithelial cells. Cell Cycle5(1), 61–70 (2006).
  • Depoortere F, Pirson I, Bartek J, Dumont JE, Roger PP. Transforming growth factor β1 selectively inhibits the cyclic AMP-dependent proliferation of primary thyroid epithelial cells by preventing the association of cyclin D3-cdk4 with nuclear p27kip1. Mol. Biol. Cell11(3), 1061–1076 (2000).
  • Miccadei S, Provenzano C, Mojzisek M, Natali PG, Civitareale D. Retinoblastoma protein acts as Pax 8 transcriptional coactivator. Oncogene24(47), 6993–7001 (2005).
  • Fortemaison N, Blancquaert S, Dumont JE et al. Differential involvement of the actin cytoskeleton in differentiation and mitogenesis of thyroid cells: inactivation of Rho proteins contributes to cyclic adenosine monophosphate-dependent gene expression but prevents mitogenesis. Endocrinology146(12), 5485–5495 (2005).
  • Iuliano R, Trapasso F, Stella A et al. Pivotal role of the RB family proteins in in vitro thyroid cell transformation. Exp. Cell Res.260(2), 257–267 (2000).
  • Motti ML, Boccia A, Belletti B et al. Critical role of cyclin D3 in TSH-dependent growth of thyrocytes and in hyperproliferative diseases of the thyroid gland. Oncogene22(48), 7576–7586 (2003).
  • Naderi S, Gutzkow KB, Lahne HU et al. cAMP-induced degradation of cyclin D3 through association with GSK-3β. J. Cell Sci.117(Pt 17), 3769–3783 (2004).
  • Saiz AD, Olvera M, Rezk S et al. Immunohistochemical expression of cyclin D1, E2F-1, and Ki-67 in benign and malignant thyroid lesions. J. Pathol.198(2), 157–162 (2002).
  • Saito J, Kohn AD, Roth RA et al. Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. Thyroid11(4), 339–351 (2001).
  • Medina DL, Toro MJ, Santisteban P. Somatostatin interferes with thyrotropin-induced G1-S transition mediated by cAMP-dependent protein kinase and phosphatidylinositol 3-kinase. Involvement of RhoA and cyclin E × cyclin-dependent kinase 2 complexes. J. Biol. Chem.275(20), 15549–15556 (2000).
  • Lewis AE, Fikaris AJ, Prendergast GV, Meinkoth JL. Thyrotropin and serum regulate thyroid cell proliferation through differential effects on p27 expression and localization. Mol. Endocrinol.18(9), 2321–2332 (2004).
  • Nagayama Y, Yokoi H, Takeda K et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J. Clin. Endocrinol. Metab.85(11), 4081–4086 (2000).
  • Paron I, D’Ambrosio C, Scaloni A et al. A differential proteomic approach to identify proteins associated with thyroid cell transformation. J. Mol. Endocrinol.34(1), 199–207 (2005).
  • Hoffmann S, Hofbauer LC, Scharrenbach V et al. Thyrotropin (TSH)-induced production of vascular endothelial growth factor in thyroid cancer cells in vitro: evaluation of TSH signal transduction and of angiogenesis-stimulating growth factors. J. Clin. Endocrinol. Metab.89(12), 6139–6145 (2004).
  • Kaczur V, Puskas LG, Nagy ZU et al. Cleavage of the human thyrotropin receptor by ADAM10 is regulated by thyrotropin. J. Mol. Recognit.20(5), 392–404 (2007).
  • Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J. Cell Biol.158(2), 221–226 (2002).
  • Takahashi S, Conti M, Van Wyk JJ. Thyrotropin potentiation of insulin-like growth factor-I dependent deoxribonucleic acid synthesis in FRTL-5 cells: mediation by an autocrine amplification factor(s). Endocrinology126(2), 736–745 (1990).
  • Pietrzik CU, Hoffmann J, Stober K et al. From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells. Proc. Natl Acad. Sci. USA95(4), 1770–1775 (1998).
  • Medina DL, Suzuki K, Pietrarelli M et al. Role of insulin and serum on thyrotropin regulation of thyroid transcription factor-1 and pax-8 genes expression in FRTL-5 thyroid cells. Thyroid10(4), 295–303 (2000).
  • Baptist M, Dumont JE, Roger PP. Demonstration of cell cycle kinetics in thyroid primary culture by immunostaining of proliferating cell nuclear antigen: differences in cyclic AMP-dependent and -independent mitogenic stimulations. J. Cell Sci.105(Pt 1), 69–80 (1993).
  • Karges B, Krause G, Homoki J et al. TSH receptor mutation V509A causes familial hyperthyroidism by release of interhelical constraints between transmembrane helices TMH3 and TMH5. J. Endocrinol.186(2), 377–385 (2005).
  • Voigt C, Holzapfel H, Paschke R. Expression of β-arrestins in toxic and cold thyroid nodules. FEBS Lett.486(3), 208–212 (2000).
  • Schiff BA, McMurphy AB, Jasser SA et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin. Cancer Res.10(24), 8594–8602 (2004).
  • Younes MN, Yazici YD, Kim S et al. Dual epidermal growth factor receptor and vascular endothelial growth factor receptor inhibition with NVP-AEE788 for the treatment of aggressive follicular thyroid cancer. Clin. Cancer Res.12(11 Pt 1), 3425–3434 (2006).
  • Hoffmann S, Rockenstein A, Ramaswamy A et al. Retinoic acid inhibits angiogenesis and tumor growth of thyroid cancer cells. Mol. Cell. Endocrinol.264(1–2), 74–81 (2007).
  • Maretzky T, Reiss K, Ludwig A et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell–cell adhesion, migration, and β-catenin translocation. Proc. Natl Acad. Sci. USA102(26), 9182–9187 (2005).
  • Reiss K, Maretzky T, Ludwig A et al. ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO J.24(4), 742–752 (2005).
  • Smith BR, Sanders J, Furmaniak J. TSH receptor antibodies. Thyroid17(10), 923–938 (2007).
  • Chia SY, Milas M, Reddy SK et al. Thyroid-stimulating hormone receptor messenger ribonucleic acid measurement in blood as a marker for circulating thyroid cancer cells and its role in the preoperative diagnosis of thyroid cancer. J. Clin. Endocrinol. Metab.92(2), 468–475 (2007).
  • van Staveren WC, Solis DW, Delys L et al. Gene expression in human thyrocytes and autonomous adenomas reveals suppression of negative feedbacks in tumorigenesis. Proc. Natl Acad. Sci. USA103(2), 413–418 (2006).
  • Prost G, Bernier-Valentin F, Munari-Silem Y, Selmi-Ruby S, Rousset B. Connexin-32 acts as a downregulator of growth of thyroid gland. Am. J. Physiol. Endocrinol. Metab.294(2), E291–E299 (2008).
  • Costa MJ, Senou M, Van Rode F et al. Reciprocal negative regulation between thyrotropin/3´,5´-cyclic adenosine monophosphate-mediated proliferation and caveolin-1 expression in human and murine thyrocytes. Mol. Endocrinol.21(4), 921–932 (2007).
  • Woodmansee WW, Kerr JM, Tucker EA et al. The proliferative status of thyrotropes is dependent on modulation of specific cell cycle regulators by thyroid hormone. Endocrinology147(1), 272–282 (2006).
  • Di Matola T, D’Ascoli F, Luongo C et al. Lovastatin-induced apoptosis in thyroid cells: involvement of cytochrome c and lamin B. Eur. J. Endocrinol.145(5), 645–650 (2001).
  • Viacava P, Bocci G, Tonacchera M et al. Markers of cell proliferation, apoptosis, and angiogenesis in thyroid adenomas: a comparative immunohistochemical and genetic investigation of functioning and nonfunctioning nodules. Thyroid17(3), 191–197 (2007).
  • Vandeput F, Zabeau M, Maenhaut C. Identification of differentially expressed genes in thyrotropin stimulated dog thyroid cells by the cDNA–AFLP technique. Mol. Cell. Endocrinol.243(1–2), 58–65 (2005).
  • Letsas KP, Frangou-Lazaridis M, Skyrlas A, Tsatsoulis A, Malamou-Mitsi V. Transcription factor-mediated proliferation and apoptosis in benign and malignant thyroid lesions. Pathol. Int.55(11), 694–702 (2005).
  • Barden CB, Shister KW, Zhu B et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin. Cancer Res.9(5), 1792–1800 (2003).
  • Mazzanti C, Zeiger MA, Costouros NG et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res.64(8), 2898–2903 (2004).
  • Weber F, Shen L, Aldred MA et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J. Clin. Endocrinol. Metab.90(5), 2512–2521 (2005).
  • Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol.24(31), 5043–5051 (2006).
  • Stolf BS, Santos MM, Simao DF et al. Class distinction between follicular adenomas and follicular carcinomas of the thyroid gland on the basis of their signature expression. Cancer106(9), 1891–1900 (2006).
  • Fryknas M, Wickenberg-Bolin U, Goransson H et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol.27(4), 211–220 (2006).
  • van Staveren WC, Solis DW, Delys L et al. Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype. Cancer Res.67(17), 8113–8120 (2007).
  • Montero-Conde C, Martin-Campos JM, Lerma E et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene27(11), 1554–1561 (2007).
  • Fujarewicz K, Jarzab M, Eszlinger M et al. A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping. Endocr. Relat. Cancer14(3), 809–826 (2007).
  • Wiseman SM, Masoudi H, Niblock P et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann. Surg. Oncol.14(2), 719–729 (2007).
  • Diehl S, Umbricht CB, Dackiw AP, Zeiger MA. Modern approaches to age-old questions about thyroid tumors. Thyroid15(6), 575–582 (2005).
  • Lee YJ, Park do J, Shin CS et al. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells. J. Korean Med. Sci.22(5), 883–890 (2007).
  • Deleu S, Savonet V, Behrends J, Dumont JE, Maenhaut C. Study of gene expression in thyrotropin-stimulated thyroid cells by cDNA expression array: ID3 transcription modulating factor as an early response protein and tumor marker in thyroid carcinomas. Exp. Cell Res.279(1), 62–70 (2002).
  • Krause K, Karger S, Schierhorn A et al. Proteomic profiling of cold thyroid nodules. Endocrinology148(4), 1754–1763 (2007).
  • Vo N, Klein ME, Varlamova O et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA102(45), 16426–16431 (2005).
  • Rehmsmeier M. Prediction of microRNA targets. Methods Mol. Biol.342, 87–99 (2006).
  • He H, Jazdzewski K, Li W et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA102(52), 19075–19080 (2005).
  • Pallante P, Visone R, Ferracin M et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13(2), 497–508 (2006).
  • Arufe MC, Lu M, Kubo A et al. Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology147(6), 3007–3015 (2006).
  • Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J. Clin. Endocrinol. Metab.92(9), 3681–3688 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.