338
Views
29
CrossRef citations to date
0
Altmetric
Review

Hypothalamic regulation of appetite

, &
Pages 577-592 | Published online: 10 Jan 2014

References

  • World Health Organisation. Genomics and World Health, Report of the Advisory Committee on Health Research – Summary. (2002).
  • Arbeeny CM. Addressing the unmet medical need for safe and effective weight loss therapies. Obes. Res.12(8), 1191–1196 (2004).
  • Must A, Spadano J, Coakley EH et al. The disease burden associated with overweight and obesity. JAMA282(16), 1523–1529 (1999).
  • Bray GA. Risks of obesity. Endocrinol. Metab. Clin. North Am.32(4), 787–804, viii (2003).
  • Stoger R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays30(2), 156–166 (2008).
  • Spiegel K, Tasali E, Penev P, Van CE. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med.141(11), 846–850 (2004).
  • Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. (14), 353–362 (1962).
  • Miller J, Rosenbloom A, Silverstein J. Childhood obesity. J. Clin. Endocrinol. Metab.89(9), 4211–4218 (2004).
  • Miller DS. Factors affecting energy expenditure. Proc. Nutr. Soc.41(2), 193–202 (1982).
  • Vilberg TR, Beatty WW. Behavioral changes following VMH lesions in rats with controlled insulin levels. Pharmacol. Biochem. Behav.3(3), 377–384 (1975).
  • Vettor R, Fabris R, Pagano C, Federspil G. Neuroendocrine regulation of eating behavior. J. Endocrinol. Invest.25(10), 836–854 (2002).
  • Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science164(880), 719–721 (1969).
  • Peruzzo B, Pastor FE, Blazquez JL et al. A second look at the barriers of the medial basal hypothalamus. Exp. Brain Res.132(1), 10–26 (2000).
  • Cheunsuang O, Stewart AL, Morris R. Differential uptake of molecules from the circulation and CSF reveals regional and cellular specialisation in CNS detection of homeostatic signals. Cell Tissue Res.325(2), 397–402 (2006).
  • Broberger C, Landry M, Wong H, Walsh JN, Hokfelt T. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology66(6), 393–408 (1997).
  • Vrang N, Larsen PJ, Clausen JT, Kristensen P. Neurochemical characterization of hypothalamic cocaine- amphetamine-regulated transcript neurons. J. Neurosci.19(10), RC5 (1999).
  • Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci.24(11), 2797–2805 (2004).
  • Elias CF, Saper CB, Maratos-Flier E et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol.402(4), 442–459 (1998).
  • Elmquist JK, Maratos-Flier E, Saper CB, Flier JS. Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci.1(6), 445–450 (1998).
  • Kalra SP, Dube MG, Pu S et al. Interacting appetite-regulating pathways in the hypothalamic regulation of bodyweight. Endocr. Rev.20(1), 68–100 (1999).
  • Cone RD, Lu D, Koppula S et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog. Horm. Res.51, 287–317 (1996).
  • Kishi T, Aschkenasi CJ, Lee CE et al. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Comp. Neurol.457(3), 213–235 (2003).
  • Adan RA, Tiesjema B, Hillebrand JJ et al. The MC4 receptor and control of appetite. Br. J. Pharmacol.149(7), 815–827 (2006).
  • Huszar D, Lynch CA, Fairchild-Huntress V et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell88(1), 131–141 (1997).
  • Bagnol D, Lu XY, Kaelin CB et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci.19(18), RC26 (1999).
  • Cone RD, Cowley MA, Butler AA et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. Relat. Metab. Disord.25(Suppl. 5), S63–S67 (2001).
  • Marks DL, Hruby V, Brookhart G, Cone RD. The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides27(2), 259–264 (2006).
  • Chen AS, Marsh DJ, Trumbauer ME et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet.26(1), 97–102 (2000).
  • Cone RD. Studies on the physiological functions of the melanocortin system. Endocr. Rev.27(7), 736–749 (2006).
  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the Agouti obesity syndrome. Nature385(6612), 165–168 (1997).
  • Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med.5(9), 1066–1070 (1999).
  • Ollmann MM, Wilson BD, Yang YK et al. Antagonism of central melanocortin receptors in vitro and in vivo by Agouti-related protein. Science278(5335), 135–138 (1997).
  • Rossi M, Kim MS, Morgan DG et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of a-melanocyte stimulating hormone in vivo. Endocrinology139(10), 4428–4431 (1998).
  • Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nat. Genet.17(3), 273–274 (1997).
  • Farooqi IS, Keogh JM, Yeo GS et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med.348(12), 1085–1095 (2003).
  • Farooqi IS, Drop S, Clements A et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes55(9), 2549–2553 (2006).
  • Krude H, Biebermann H, Luck W et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet.19(2), 155–157 (1998).
  • Lee YS, Challis BG, Thompson DA et al. A POMC variant implicates b-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab.3(2), 135–140 (2006).
  • Yeo GS, Farooqi IS, Aminian S et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet.20(2), 111–112 (1998).
  • Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet.20(2), 113–114 (1998).
  • Hinney A, Schmidt A, Nottebom K et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab.84(4), 1483–1486 (1999).
  • Challis BG, Pritchard LE, Creemers JW et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum. Mol. Genet.11(17), 1997–2004 (2002).
  • Loos RJ, Lindgren CM, Li S et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet.40(6), 768–775 (2008).
  • Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu. Rev. Med.56, 443–458 (2005).
  • Douglass J, McKinzie AA, Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci.15(3 Pt 2), 2471–2481 (1995).
  • Kristensen P, Judge ME, Thim L et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature393(6680), 72–76 (1998).
  • Douglass J, Daoud S. Characterization of the human cDNA and genomic DNA encoding CART: a cocaine- and amphetamine-regulated transcript. Gene169(2), 241–245 (1996).
  • Elias CF, Lee C, Kelly J et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron21(6), 1375–1385 (1998).
  • Lambert PD, Couceyro PR, McGirr KM et al. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse29(4), 293–298 (1998).
  • Aja S, Sahandy S, Ladenheim EE, Schwartz GJ, Moran TH. Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. Am. J. Physiol. Regul. Integr. Comp. Physiol.281(6), R1862–R1867 (2001).
  • Asnicar MA, Smith DP, Yang DD et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology142(10), 4394–4400 (2001).
  • Bannon AW, Seda J, Carmouche M. Biological functions of cocaine- and amphetamine-regulated transcript (CART): data with CART peptides and CART knockout mice. Presented at: 30th Annual Meeting of the Society for Neuroscience. New Orleans, LA, USA 4–9 November 2000 (Abstract).
  • del Giudice EM, Santoro N, Cirillo G et al. Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes50(9), 2157–2160 (2001).
  • Abbott CR, Rossi M, Wren AM et al. Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology142(8), 3457–3463 (2001).
  • Kong WM, Stanley S, Gardiner J et al. A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J.17(12), 1688–1690 (2003).
  • Tomaszuk A, Simpson C, Williams G. Neuropeptide Y, the hypothalamus and the regulation of energy homeostasis. Horm. Res.46(2), 53–58 (1996).
  • Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA95(25), 15043–15048 (1998).
  • Bai FL, Yamano M, Shiotani Y et al. An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res.331(1), 172–175 (1985).
  • Baker RA, Herkenham M. Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. J. Comp. Neurol.358(4), 518–530 (1995).
  • Chronwall BM. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides6(Suppl. 2), 1–11 (1985).
  • Haskell-Luevano C, Chen P, Li C et al. Characterization of the neuroanatomical distribution of Agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology140(3), 1408–1415 (1999).
  • Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology115(1), 427–429 (1984).
  • Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides7(6), 1189–1192 (1986).
  • Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl Acad. Sci. USA88(23), 10931–10935 (1991).
  • McKibbin PE, Rogers P, Williams G. Increased neuropeptide Y concentrations in the lateral hypothalamic area of the rat after the onset of darkness: possible relevance to the circadian periodicity of feeding behavior. Life Sci.48(26), 2527–2533 (1991).
  • Brady LS, Smith MA, Gold PW, Herkenham M. Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology52(5), 441–447 (1990).
  • Sahu A, Kalra PS, Kalra SP. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides9(1), 83–86 (1988).
  • Duhault J, Boulanger M, Chamorro S et al. Food intake regulation in rodents: Y5 or Y1 NPY receptors or both? Can. J. Physiol. Pharmacol.78(2), 173–185 (2000).
  • Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides38(4), 201–211 (2004).
  • Cowley MA, Smart JL, Rubinstein M et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature411(6836), 480–484 (2001).
  • Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science310(5748), 683–685 (2005).
  • Gropp E, Shanabrough M, Borok E et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci.8(10), 1289–1291 (2005).
  • Bewick GA, Gardiner JV, Dhillo WS et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J.19(12), 1680–1682 (2005).
  • Xu AW, Kaelin CB, Morton GJ et al. Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol.3(12), e415 (2005).
  • Cowley MA, Pronchuk N, Fan W et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron24(1), 155–163 (1999).
  • Kim MS, Rossi M, Abusnana S et al. Hypothalamic localization of the feeding effect of Agouti-related peptide and a-melanocyte-stimulating hormone. Diabetes49(2), 177–182 (2000).
  • Stanley BG, Chin AS, Leibowitz SF. Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res. Bull.14(6), 521–524 (1985).
  • Fekete C, Legradi G, Mihaly E et al. a-melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J. Neurosci.20(4), 1550–1558 (2000).
  • Legradi G, Lechan RM. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology140(8), 3643–3652 (1999).
  • Nieuwenhuizen AG, Rutters F. The hypothalamic–pituitary–adrenal-axis in the regulation of energy balance. Physiol. Behav.94(2), 169–77 (2008).
  • Martin NM, Smith KL, Bloom SR, Small CJ. Interactions between the melanocortin system and the hypothalamo–pituitary–thyroid axis. Peptides27(2), 333–339 (2006).
  • Broberger C, De LL, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and Agouti gene-related protein systems. J. Comp. Neurol.402(4), 460–474 (1998).
  • Horvath TL, Diano S, van den Pol AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J. Neurosci.19(3), 1072–1087 (1999).
  • Bittencourt JC, Presse F, Arias C et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol.319(2), 218–245 (1992).
  • Bittencourt JC, Elias CF. Melanin-concentrating hormone and neuropeptide EI projections from the lateral hypothalamic area and zona incerta to the medial septal nucleus and spinal cord: a study using multiple neuronal tracers. Brain Res.805(1–2), 1–19 (1998).
  • Elias CF, Lee CE, Kelly JF et al. Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol.432(1), 1–19 (2001).
  • Cvetkovic V, Brischoux F, Jacquemard C et al. Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J. Neurochem.91(4), 911–919 (2004).
  • Brobeck JR. Mechanisms of the development of obesity in animals with hypothalamic lesions. Physiol. Rev.26, 541–559 (1946).
  • Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med.77(2), 323–324 (1951).
  • Luiten PG, ter Horst GJ, Steffens AB. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog. Neurobiol.28(1), 1–54 (1987).
  • Bernardis LL, Bellinger LL. The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Res.434(3), 321–381 (1987).
  • Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: ingestive behavior. Neurosci. Biobehav. Rev.20(2), 189–287 (1996).
  • Rodriguez M, Beauverger P, Naime I et al. Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2. Mol. Pharmacol.60(4), 632–639 (2001).
  • Hill J, Duckworth M, Murdock P et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J. Biol. Chem.276(23), 20125–20129 (2001).
  • Chambers J, Ames RS, Bergsma D et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature400(6741), 261–265 (1999).
  • Tan CP, Sano H, Iwaasa H et al. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics79(6), 785–792 (2002).
  • Saito Y, Nothacker HP, Wang Z et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature400(6741), 265–269 (1999).
  • Chen Y, Hu C, Hsu CK et al. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology143(7), 2469–2477 (2002).
  • Zhou D, Shen Z, Strack AM, Marsh DJ, Shearman LP. Enhanced running wheel activity of both Mch1r- and Pmch-deficient mice. Regul. Pept.124(1–3), 53–63 (2005).
  • Qu D, Ludwig DS, Gammeltoft S et al. A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature380(6571), 243–247 (1996).
  • Ludwig DS, Tritos NA, Mastaitis JW et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest.107(3), 379–386 (2001).
  • Verret L, Goutagny R, Fort P et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci.4(1), 19 (2003).
  • Sakurai T, Amemiya A, Ishii M et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell92(4), 573–85 (1998).
  • Hagan JJ, Leslie RA, Patel S et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA96(19), 10911–10916 (1999).
  • Chronwall BM, DiMaggio DA, Massari VJ et al. The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience15(4), 1159–1181 (1985).
  • Gehlert DR, Chronwall BM, Schafer MP, O’Donohue TL. Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse1(1), 25–31 (1987).
  • Jacobowitz DM, O’Donohue TL. a-melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc. Natl Acad. Sci. USA75(12), 6300–6304 (1978).
  • Mihaly E, Fekete C, Legradi G, Lechan RM. Hypothalamic dorsomedial nucleus neurons innervate thyrotropin-releasing hormone-synthesizing neurons in the paraventricular nucleus. Brain Res.891(1–2), 20–31 (2001).
  • Chen P, Williams SM, Grove KL, Smith MS. Melanocortin 4 receptor-mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. J. Neurosci.24(22), 5091–5100 (2004).
  • Guan XM, Yu H, Trumbauer M et al. Induction of neuropeptide Y expression in dorsomedial hypothalamus of diet-induced obese mice. Neuroreport9(15), 3415–3419 (1998).
  • Kesterson RA, Huszar D, Lynch CA, Simerly RB, Cone RD. Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the Agouti obesity syndrome. Mol. Endocrinol.11(5), 630–637 (1997).
  • Chen J, Scott KA, Zhao Z, Moran TH, Bi S. Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience152(1), 178–88 (2008).
  • Bi S, Scott KA, Kopin AS, Moran TH. Differential roles for cholecystokinin a receptors in energy balance in rats and mice. Endocrinology145(8), 3873–3880 (2004).
  • Moran TH. Unraveling the obesity of OLETF rats. Physiol. Behav.94(1), 71–78 (2008).
  • Matsuda M, Liu Y, Mahankali S et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes48(9), 1801–1806 (1999).
  • King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and bodyweight. Physiol. Behav.87(2), 221–244 (2006).
  • Yeo GS, Connie Hung CC, Rochford J et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci.7(11), 1187–1189 (2004).
  • Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp. Neurol.131(2), 229–238 (1995).
  • Xu B, Goulding EH, Zang K et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci.6(7), 736–742 (2003).
  • Wisse BE, Schwartz MW. The skinny on neurotrophins. Nat. Neurosci.6(7), 655–656 (2003).
  • Kong WM, Martin NM, Smith KL et al. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology145(11), 5252–5258 (2004).
  • Wikberg JE, Mutulis F. Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat. Rev. Drug Discov.7(4), 307–323 (2008).
  • Maldonado-Irizarry CS, Swanson CJ, Kelley AE. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci.15(10), 6779–6788 (1995).
  • Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev.27(8), 765–776 (2004).
  • Broberger C. Brain regulation of food intake and appetite: molecules and networks. J. Intern. Med.258(4), 301–327 (2005).
  • Pistis M, Muntoni AL, Pillolla G, Gessa GL. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur. J. Neurosci.15(11), 1795–1802 (2002).
  • Cota D, Tschop MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res. Rev.51(1), 85–107 (2006).
  • Osei-Hyiaman D, Depetrillo M, Harvey-White J et al. Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology81(4), 273–282 (2005).
  • Hildebrandt AL, Kelly-Sullivan DM, Black SC. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur. J. Pharmacol.462(1–3), 125–132 (2003).
  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev.27(1), 73–100 (2006).
  • Kirkham TC, Williams CM, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol.136(4), 550–557 (2002).
  • Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol.134(6), 1151–1154 (2001).
  • Di M, V, Goparaju SK, Wang L et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature410(6830), 822–825 (2001).
  • Malcher-Lopes R, Di S, Marcheselli VS et al. Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J. Neurosci.26(24), 6643–6650 (2006).
  • Matias I, Vergoni AV, Petrosino S et al. Regulation of hypothalamic endocannabinoid levels by neuropeptides and hormones involved in food intake and metabolism: insulin and melanocortins. Neuropharmacology54(1), 206–212 (2008).
  • Williams CM, Kirkham TC. Reversal of d 9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol. Biochem. Behav.71(1–2), 333–340 (2002).
  • Verty AN, Singh ME, McGregor IS, Mallet PE. The cannabinoid receptor antagonist SR 141716 attenuates overfeeding induced by systemic or intracranial morphine. Psychopharmacology (Berl.)168(3), 314–323 (2003).
  • Gallate JE, McGregor IS. The motivation for beer in rats: effects of ritanserin, naloxone and SR 141716. Psychopharmacology (Berl.)142(3), 302–308 (1999).
  • Hernandez L, Hoebel BG. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci.42(18), 1705–1712 (1988).
  • Leibowitz SF, Weiss GF, Shor-Posner G. Hypothalamic serotonin: pharmacological, biochemical, and behavioral analyses of its feeding-suppressive action. Clin. Neuropharmacol.11(Suppl. 1), S51–S71 (1988).
  • Taylor K, Lester E, Hudson B, Ritter S. Hypothalamic and hindbrain NPY, AGRP and NE increase consummatory feeding responses. Physiol. Behav.90(5), 744–750 (2007).
  • Huang LZ, Winzer-Serhan UH. Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups. Dev. Neurobiol.67(3), 363–377 (2007).
  • Kramer PR, Kramer SF, Marr K et al. Nicotine administration effects on feeding and cocaine–amphetamine-regulated transcript (CART) expression in the hypothalamus. Regul. Pept.138(2–3), 66–73 (2007).
  • Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol.22(5), 1023–1031 (2008).
  • Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett.582(1), 74–80 (2008).
  • Tovar S, Nogueiras R, Tung LY et al. Central administration of resistin promotes short-term satiety in rats. Eur. J. Endocrinol.153(3), R1–R5 (2005).
  • Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature372(6505), 425–432 (1994).
  • Montague CT, Farooqi IS, Whitehead JP et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature387(6636), 903–908 (1997).
  • Farooqi IS, Jebb SA, Langmack G et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341(12), 879–884 (1999).
  • Considine RV. Weight regulation, leptin and growth hormone. Horm. Res.48(Suppl.), 5116–5121 (1997).
  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides17(2), 305–311 (1996).
  • Faouzi M, Leshan R, Bjornholm M et al. Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology148(11), 5414–5423 (2007).
  • Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature428(6982), 569–574 (2004).
  • Cota D, Proulx K, Smith KA et al. Hypothalamic mTOR signaling regulates food intake. Science312(5775), 927–930 (2006).
  • Bagnasco M, Dube MG, Kalra PS, Kalra SP. Evidence for the existence of distinct central appetite, energy expenditure, and ghrelin stimulation pathways as revealed by hypothalamic site-specific leptin gene therapy. Endocrinology143(11), 4409–4421 (2002).
  • Roseberry AG, Liu H, Jackson AC, Cai X, Friedman JM. Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron41(5), 711–722 (2004).
  • Harrold JA, Williams G, Widdowson PS. Early leptin response to a palatable diet predicts dietary obesity in rats: key role of melanocortin-4 receptors in the ventromedial hypothalamic nucleus. J. Neurochem.74(3), 1224–1228 (2000).
  • Bruning JC, Gautam D, Burks DJ et al. Role of brain insulin receptor in control of bodyweight and reproduction. Science289(5487), 2122–2125 (2000).
  • McGowan MK, Andrews KM, Grossman SP. Chronic intrahypothalamic infusions of insulin or insulin antibodies alter bodyweight and food intake in the rat. Physiol. Behav.51(4), 753–766 (1992).
  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci.5(6), 566–572 (2002).
  • Burks DJ, Font de MJ, Schubert M et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature407(6802), 377–382 (2000).
  • Benoit SC, Air EL, Coolen LM et al. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci.22(20), 9048–9052 (2002).
  • Chaudhri OB, Wynne K, Bloom SR. Can gut hormones control appetite and prevent obesity? Diabetes Care31(Suppl. 2), S284–S5289 (2008).
  • ter Horst GJ, Luiten PG, Kuipers F. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J. Auton. Nerv. Syst.11(1), 59–75 (1984).
  • ter Horst GJ, de BP, Luiten PG, van Willigen JD. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience31(3), 785–797 (1989).
  • Ellacott KL, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology147(7), 3190–3195 (2006).
  • Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature444(7121), 854–859 (2006).
  • Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature245(5424), 323–325 (1973).
  • Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol.84(3), 488–495 (1973).
  • Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am. J. Clin. Nutr.34(2), 154–160 (1981).
  • Moran TH, Bi S. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Phil. Trans. R. Soc. Lond. B Biol. Sci.361(1471), 1211–1218 (2006).
  • Silver AJ, Flood JF, Song AM, Morley JE. Evidence for a physiological role for CCK in the regulation of food intake in mice. Am. J. Physiol.256(3 Pt 2), R646–R652 (1989).
  • Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res.860(1–2), 1–10 (2000).
  • Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behavior. Int. J. Obes. Relat. Metab. Disord.25(Suppl. 5), S42–S47 (2001).
  • Ghatei MA, Uttenthal LO, Christofides ND, Bryant MG, Bloom SR. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J. Clin. Endocrinol. Metab.57(3), 488–495 (1983).
  • Turton MD, O’Shea D, Gunn I et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature379(6560), 69–72 (1996).
  • Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology138(10), 4445–4455 (1997).
  • Ma X, Bruning J, Ashcroft FM. Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons. J. Neurosci.27(27), 7125–7129 (2007).
  • Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ. Arcuate GLP-1 receptors regulate glucose homeostasis but not food intake. Diabetes DOI: 10.2337 (2008) (Epub ahead of print).
  • Abbott CR, Monteiro M, Small CJ et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res.1044(1), 127–131 (2005).
  • Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology127(2), 546–558 (2004).
  • Dakin CL, Small CJ, Batterham RL et al. Peripheral oxyntomodulin reduces food intake and bodyweight gain in rats. Endocrinology145(6), 2687–2695 (2004).
  • Knauf C, Cani PD, Kim DH et al. The role of CNS GLP-1 receptors in enteric glucose sensing. Diabetes DOI: 10.2337 (2008) (Epub ahead of print).
  • Chaudhri OB, Parkinson JR, Kuo YT et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem. Biophys. Res. Commun.350(2), 298–306 (2006).
  • Kojima M, Hosoda H, Date Y et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature402(6762), 656–660 (1999).
  • Cowley MA, Smith RG, Diano S et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron37(4), 649–661 (2003).
  • Toshinai K, Date Y, Murakami N et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology144(4), 1506–1512 (2003).
  • Neary NM, Small CJ, Wren AM et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab.89(6), 2832–2836 (2004).
  • Wynne K, Giannitsopoulou K, Small CJ et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J. Am. Soc. Nephrol.16(7), 2111–2118 (2005).
  • Nakazato M, Murakami N, Date Y et al. A role for ghrelin in the central regulation of feeding. Nature409(6817), 194–198 (2001).
  • Ruter J, Kobelt P, Tebbe JJ et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res.991(1–2), 26–33 (2003).
  • Olszewski PK, Grace MK, Billington CJ, Levine AS. Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides24(6), 919–923 (2003).
  • Shrestha YB, Wickwire K, Giraudo SQ. Action of MT-II on ghrelin-induced feeding in the paraventricular nucleus of the hypothalamus. Neuroreport15(8), 1365–1367 (2004).
  • Kola B, Farkas I, Christ-Crain M et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE3(3), e1797 (2008).
  • Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell Biol.23(22), 7973–7981 (2003).
  • Wortley KE, del Rincon JP, Murray JD et al. Absence of ghrelin protects against early-onset obesity. J. Clin. Invest.115(12), 3573–3578 (2005).
  • Zigman JM, Nakano Y, Coppari R et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest.115(12), 3564–3572 (2005).
  • Batterham RL, Cowley MA, Small CJ et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature418(6898), 650–654 (2002).
  • Boey D, Lin S, Karl T et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia49(6), 1360–1370 (2006).
  • Acuna-Goycolea C, van den Pol AN. Peptide YY3–36 inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J. Neurosci.25(45), 10510–10519 (2005).
  • Challis BG, Coll AP, Yeo GS et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3–36. Proc. Natl Acad. Sci. USA101(13), 4695–4700 (2004).
  • Halatchev IG, Ellacott KL, Fan W, Cone RD. Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology145(6), 2585–2590 (2004).
  • Koda S, Date Y, Murakami N et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology146(5), 2369–2375 (2005).
  • Gustafson EL, Smith KE, Durkin MM et al. Distribution of the neuropeptide Y Y2 receptor mRNA in rat central nervous system. Brain Res. Mol. Brain Res.46(1–2), 223–235 (1997).
  • Asakawa A, Inui A, Yuzuriha H et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology124(5), 1325–1336 (2003).
  • Batterham RL, Le Roux CW, Cohen MA et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab.88(8), 3989–3992 (2003).
  • Jesudason DR, Monteiro MP, McGowan BM et al. Low-dose pancreatic polypeptide inhibits food intake in man. Br. J. Nutr.97(3), 426–429 (2007).
  • Whitcomb DC, Puccio AM, Vigna SR, Taylor IL, Hoffman GE. Distribution of pancreatic polypeptide receptors in the rat brain. Brain Res.760(1–2), 137–149 (1997).
  • Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med.8(12), 1376–1382 (2002).
  • Hardie DG. The AMP-activated protein kinase pathway – new players upstream and downstream. J. Cell Sci.117(Pt 23), 5479–5487 (2004).
  • Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem. Biophys. Res. Commun.366(2), 388–392 (2008).
  • McCrimmon RJ, Shaw M, Fan X et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes57(2), 444–450 (2008).
  • Grossman SP. The role of glucose, insulin and glucagon in the regulation of food intake and bodyweight. Neurosci. Biobehav. Rev.10(3), 295–315 (1986).
  • Ritter S, Dinh TT, Li AJ. Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol. Behav.89(4), 490–500 (2006).
  • Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J. Biol. Chem.279(30), 31139–31148 (2004).
  • Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol. Motil.20(Suppl.), 164–172 (2008).
  • Atkinson TJ. Central and peripheral neuroendocrine peptides and signaling in appetite regulation: considerations for obesity pharmacotherapy. Obes. Rev.9(2), 108–120 (2008).
  • Kamiji MM, Inui A. Neuropeptide y receptor selective ligands in the treatment of obesity. Endocr. Rev.28(6), 664–684 (2007).
  • Rudolf K, Eberlein W, Engel W et al. The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. Eur. J. Pharmacol.271(2–3), R11–R13 (1994).
  • Halford JC, Harrold JA, Lawton CL, Blundell JE. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr. Drug Targets6(2), 201–213 (2005).
  • Bray GA, Ryan DH. Drug treatment of the overweight patient. Gastroenterology132(6), 2239–2252 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.