26
Views
0
CrossRef citations to date
0
Altmetric
Review

Sphingomyelin synthases and testicular function

, , &
Pages 593-601 | Published online: 10 Jan 2014

References

  • Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J. Biol. Chem.281, 29421–29425 (2006).
  • Levade T, Jaffrezou JP. Signalling sphingomyelinases: which, where, how and why? Biochim. Biophys. Acta1438, 1–17 (1999).
  • Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol.82, 27–44 (2004).
  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Membrane structure. In: Molecular Biology of the Cell. Garland Publishing, Inc., NY, USA 10, 477–506 (1994).
  • Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem.265, 8650–8657 (1990).
  • Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett.261, 155–157 (1990).
  • Albi E, Viola-Magni MP. Chromatin-associated sphingomyelin: metabolism in relation to cell function. Cell Biochem. Funct.21, 211–215 (2003).
  • Albi E, Magni MV. Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Lett.460, 369–372 (1999).
  • Ullman MD, Radin NS. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem.249, 1506–1512 (1974).
  • van Golde LM, Raben J, Batenburg JJ, Fleischer B, Zambrano F, Fleischer S. Biosynthesis of lipids in Golgi complex and other subcellular fractions from rat liver. Biochim. Biophys. Acta360, 179–192 (1974).
  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. EMBO J.23, 33–44 (2004).
  • Heidler SA, Radding JA. Inositol phosphoryl transferases from human pathogenic fungi. Biochim. Biophys. Acta1500, 147–152 (2000).
  • Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN. Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim. Biophys. Acta1439, 299–316 (1999).
  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem.272, 9809–9817 (1997).
  • Neuwald AF. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci.6, 1764–1767 (1997).
  • Haider SG. Cell biology of Leydig cells in the testis. Int. Rev. Cytol.233, 181–241 (2004).
  • O’Shaughnessy PJ, Baker PJ, Johnston H. Neuroendocrine regulation of Leydig cell development. Ann. NY Acad. Sci.1061, 109–119 (2005).
  • Johnson AD, Gomes WR, Vandemark NL. The Testis (Volume 1): Development, Anatomy, and Physiology. Academic Press, USA (1970).
  • Setchell BP, Hertel T, Soder O. Postnatal testicular development, cellular organization and paracrine regulation. Endocr. Dev.5, 24–37 (2003).
  • Brinster RL. Male germline stem cells: from mice to men. Science316, 404–405 (2007).
  • Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol. Rev.87, 1–28 (2007).
  • Wang CQ, Cheng CY. A seamless trespass: germ cell migration across the seminiferous epithelium during spermatogenesis. J. Cell. Biol.178, 549–556 (2007).
  • Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am. J. Anat.148, 313–328 (1977).
  • Russell LD. Sertoli–germ cell interrelations: a review. Gamete Res.3, 179–202 (1980).
  • Kunwar PS, Siekhaus DE, Lehmann R. In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol.22, 237–265 (2006).
  • Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim. Biophys. Acta1746, 284–294 (2005).
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol.1, 31–39 (2000).
  • Meroni SB, Pellizzari EH, Canepa DF, Cigorraga SB. Possible involvement of ceramide in the regulation of rat Leydig cell function. J. Steroid Biochem. Mol. Biol.75, 307–313 (2000).
  • Furland NE, Zanetti SR, Oresti GM, Maldonado EN, Aveldano MI. Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J. Biol. Chem.282, 18141–18150 (2007).
  • Yang Z, Jean-Baptiste G, Khoury C, Greenwood MT. The mouse sphingomyelin synthase 1 (SMS1) gene is alternatively spliced to yield multiple transcripts and proteins. Gene363, 123–132 (2005).
  • Lee NP, Mruk DD, Xia W, Cheng CY. Cellular localization of sphingomyelin synthase 2 in the seminiferous epithelium of adult rat testes. J. Endocrinol.192, 17–32 (2007).
  • Ziulkoski AL, Zimmer AR, Zanettini JS, Trugo LC, Guma FC. Synthesis and transport of different sphingomyelin species in rat Sertoli cells. Mol. Cell. Biochem.219, 57–64 (2001).
  • Ziulkoski AL, Zimmer AR, Guma FC. de novo synthesis and recycling pathways of sphingomyelin in rat Sertoli cells. Biochem. Biophys. Res. Commun.281, 971–975 (2001).
  • Yan HH, Mruk DD, Cheng CY. Junction restructuring and spermatogenesis: the biology, regulation, and implication in male contraceptive development. Curr. Top. Dev. Biol.80, 57–92 (2008).
  • Lee NP, Cheng CY. Ectoplasmic specialization, a testis-specific cell–cell actin-based adherens junction type: is this a potential target for male contraceptive development? Hum. Reprod. Update10, 349–369 (2004).
  • Weber JE, Russell LD, Wong V, Peterson RN. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli–Sertoli and Sertoli–germ-cell relationships. Am. J. Anat.167, 163–179 (1983).
  • Goossens S, van Roy F. Cadherin-mediated cell–cell adhesion in the testis. Front. Biosci.10, 398–419 (2005).
  • Lee NP, Yeung WS, Luk JM. Junction interaction in the seminiferous epithelium: regulatory roles of connexin-based gap junction. Front. Biosci.12, 1552–1562 (2007).
  • Yan HH, Mruk DD, Lee WM, Cheng CY. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays29, 36–48 (2007).
  • Wong CH, Cheng CY. The blood–testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr. Top. Dev. Biol.71, 263–296 (2005).
  • Russell L, Peterson RN. Sertoli cell junctions: morphological and functional correlates. Int. Rev. Cytol.94, 177–211 (1985).
  • Mruk DD, Wong CH, Silvestrini B, Cheng CY. A male contraceptive targeting germ cell adhesion. Nat. Med.12, 1323–1328 (2006).
  • Cheng CY, Mruk D, Silvestrini B et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception72, 251–261 (2005).
  • Ramstedt B, Slotte JP. Membrane properties of sphingomyelins. FEBS Lett.531, 33–37 (2002).
  • Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev.81, 1689–1723 (2001).
  • Prinetti A, Prioni S, Chigorno V, Karagogeos D, Tettamanti G, Sonnino S. Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J. Neurochem.78, 1162–1167 (2001).
  • Lee NP, Cheng CY. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J. Cell. Physiol.202, 344–360 (2005).
  • Snook CF, Jones JA, Hannun YA. Sphingolipid-binding proteins. Biochim. Biophys. Acta1761, 927–946 (2006).
  • Hidari K, Ichikawa S, Fujita T, Sakiyama H, Hirabayashi Y. Complete removal of sphingolipids from the plasma membrane disrupts cell to substratum adhesion of mouse melanoma cells. J. Biol. Chem.271, 14636–14641 (1996).
  • Dressler KA, Kan CC, Kolesnick RN. Sphingomyelin synthesis is involved in adherence during macrophage differentiation of HL-60 cells. J. Biol. Chem.266, 11522–11527 (1991).
  • Wong CH, Mruk DD, Siu MK, Cheng CY. Blood–testis barrier dynamics are regulated by α2-macroglobulin via the c-Jun N-terminal protein kinase pathway. Endocrinology146, 1893–1908 (2005).
  • Abou-Haila A, Tulsiani DRP. Mammalian sperm acrosome: formation, contents, and function. Arch. Biochem. Biophys.379, 173–182 (2000).
  • Honda A, Siruntawineti J, Baba T. Role of acrosomal matrix proteases in sperm–zona pellucida interactions. Hum. Reprod. Update8, 405–412 (2002).
  • Moreno RD, Alvarado CP. The mammalian acrosome as a secretory lysosome: new and old evidence. Mol. Reprod. Dev.73, 1430–1434 (2006).
  • Tulsiani DRP, Abou-Haila A, Loeser CR, Pereira BMJ. The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp. Cell Res.240, 151–164 (1998).
  • Ramalho-Santos J, Schatten G, Moreno RD. Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol. Reprod.67, 1043–1051 (2002).
  • Pentikainen V, Dunkel L, Erkkila K. Male germ cell apoptosis. Endocr. Dev.5, 56–80 (2003).
  • Orth JM. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat. Rec.203, 485–492 (1982).
  • Wang ZX, Wreford NG, De Kretser DM. Determination of Sertoli cell numbers in the developing rat testis by stereological methods. Int. J. Androl.12, 58–64 (1989).
  • Benbrahim-Tallaa L, Siddeek B, Bozec A et al. Alterations of Sertoli cell activity in the long-term testicular germ cell death process induced by fetal androgen disruption. J. Endocrinol.196, 21–31 (2008).
  • Lee NP, Leung KW, Wo JY, Tam PC, Yeung WS, Luk JM. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis11, 1215–1229 (2006).
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol.35, 495–516 (2007).
  • Afford S, Randhawa S. Apoptosis. Mol. Pathol.53, 55–63 (2000).
  • Ding T, Li Z, Hailemariam T et al. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apopotosis. J. Lipid Res.49, 376–385 (2008).
  • Tafesse FG, Huitema K, Hermansson M et al. Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J. Biol. Chem.282, 17537–17547 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.