448
Views
119
CrossRef citations to date
0
Altmetric
Review

Biotin and biotinidase deficiency

, &
Pages 715-724 | Published online: 10 Jan 2014

References

  • National Research Council. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Food and Nutrition Board, Institute of Medicine. National Academy Press, Washington, DC, USA (1998).
  • Camporeale G, Zempleni J. Biotin. In: Present Knowledge in Nutrition. Bowman BA, Russell RM (Eds). International Life Sciences Institute, Washington, DC, USA 314–326 (2006).
  • Kim K-H, McCormick DB, Bier DM, Goodridge AG. Regulation of mammalian acetyl-coenzyme A carboxylase. Ann. Rev. Nutr.17, 77–99 (1997).
  • Shriver BJ, Roman-Shriver C, Allred JB. Depletion and repletion of biotinyl enzymes in liver of biotin-deficient rats: evidence of a biotin storage system. J. Nutr.123, 1140–1149 (1993).
  • Freytag SO, Utter MF. Induction of pyruvate carboxylase apoenzyme and holoenzyme in 3T3–L1 cells during differentiation. Proc. Natl. Acad. Sci. USA77(3), 1321–1325 (1980).
  • Jitrapakdee S, Slawik M, Medina-Gomez G et al. The peroxisome proliferator-activated receptor-gamma regulates murine pyruvate carboxylase gene expression in vivo and in vitro. J. Biol. Chem.280(29), 27466–27476 (2005).
  • MacDonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J. Biol. Chem.270(34), 20051–20058 (1995).
  • Garrett RH, Grisham CM. Biochemistry. Saunders College Publishing, TX, USA (1995).
  • Ozand PT, Gascon GG, Essa MA et al. Biotin-responsive basal ganglia disease: a novel entity. Brain121(Pt 7), 1267–1279 (1998).
  • Said HM, Thuy LP, Sweetman L, Schatzman B. Transport of the biotin dietary derivative biocytin (N-biotinyl-L-lysine) in rat small intestine. Gastroenterology104, 75–80 (1993).
  • Wolf B, Grier RE, McVoy JRS, Heard GS. Biotinidase deficiency: a novel vitamin recycling defect. J. Inherit. Metab. Dis.8(Suppl. 1), 53–58 (1985).
  • Bowman BB, Rosenberg I. Biotin absorption by distal rat intestine. J. Nutr.117, 2121–2126 (1987).
  • Said HM. Cellular uptake of biotin: mechanisms and regulation. J. Nutr.129(2 Suppl.), 490S–493S (1999).
  • Said HM, Ortiz A, McCloud E et al. Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid. Am. J. Physiol.275, C1365–C1371 (1998).
  • Said HM. Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu. Rev. Physiol.66, 419–446 (2004).
  • Daberkow RL, White BR, Cederberg RA, Griffin JB, Zempleni J. Monocarboxylate transporter 1 mediates biotin uptake in human peripheral blood mononuclear cells. J. Nutr.133, 2703–2706 (2003).
  • Dakshinamurti K, Chauhan J. Biotin-binding proteins. In: Vitamin Receptors: Vitamins as Ligands in Cell Communication. Dakshinamurti K (Ed.). Cambridge University Press, Cambridge, UK 200–249 (1994).
  • Narang MA, Dumas R, Ayer LM, Gravel RA. Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum. Mol. Genet.13, 15–23 (2004).
  • Camporeale G, Giordano E, Rendina R, Zempleni J, Eissenberg JC. Drosophila holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan and heat tolerance. J. Nutr.136(11), 2735–2742 (2006).
  • Freytag SO, Utter MF. Regulation of the synthesis and degradation of pyruvate carboxylase in 3T3–L1 cells. J. Biol. Chem.258(10), 6307–6312 (1983).
  • Weinberg MD, Utter MF. Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. J. Biol. Chem.254, 9492–9499 (1979).
  • Weinberg MD, Utter MF. Effect of streptozotocin-induced diabetes mellitus on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. Biochem. J.188, 601–608 (1980).
  • Majerus P, Kilburn E. Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. J. Biol. Chem.244, 6254–6262 (1969).
  • Nakanishi S, Numa S. Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. Eur. J. Biochem.16, 161–173 (1970).
  • Rodriguez-Fuentes N, Lopez-Rosas I, Roman-Cisneros G, Velazquez-Arellano A. Biotin deficiency affects both synthesis and degradation of pyruvate carboxylase in rat primary hepatocyte cultures. Mol. Genet. Metab.92(3), 222–228 (2007).
  • Mock DM, Stadler DD. Conflicting indicators of biotin status from a cross-sectional study of normal pregnancy. J. Am. Coll. Nutr.16, 252–257 (1997).
  • Mock DM, Quirk JG, Mock NI. Marginal biotin deficiency during normal pregnancy. Am. J. Clin. Nutr.75(2), 295–299 (2002).
  • Stratton SL, Bogusiewicz A, Mock MM et al. Lymphocyte propionyl-CoA carboxylase and its activation by biotin are sensitive indicators of marginal biotin deficiency in humans. Am. J. Clin. Nutr.84(2), 384–388 (2006).
  • Mock DM. Marginal biotin deficiency is teratogenic in mice and perhaps humans: a review of biotin deficiency during human pregnancy and effects of biotin deficiency on gene expression and enzyme activities in mouse dam and fetus. J. Nutr. Biochem.16(7), 435–437 (2005).
  • Mock DM, Mock NI, Stewart CW, LaBorde JB, Hansen DK. Marginal biotin deficiency is teratogenic in ICR mice. J. Nutr.133, 2519–2525 (2003).
  • Zempleni J, Mock DM. Marginal biotin deficiency is teratogenic. Proc. Soc. Exp. Biol. Med.223(1), 14–21 (2000).
  • Watanabe T, Endo A. Species and strain differences in teratogenic effects of biotin deficiency in rodents. J. Nutr.119, 255–261 (1989).
  • Mock DM, Stadler D, Stratton S, Mock NI. Biotin status assessed longitudinally in pregnant women. J. Nutr.127(5), 710–716 (1997).
  • Mantagos S, Malamitsi-Puchner A, Antsaklis A et al. Biotin plasma levels of the human fetus. Biol. Neonate74, 72–74 (1998).
  • Sealey WM, Stratton SL, Mock DM, Hansen DK. Marginal maternal biotin deficiency in CD-1 mice reduces fetal mass of biotin-dependent carboxylases. J. Nutr.135(5), 973–977 (2005).
  • Mock DM. Biotin status: which are valid indicators and how do we know? J. Nutr.129(2 Suppl.), 498S–503S (1999).
  • Schulpis KH, Karikas GA, Tjamouranis J, Regoutas S, Tsakiris S. Low serum biotinidase activity in children with valproic acid monotherapy. Epilepsia42(10), 1359–1362 (2001).
  • Mock DM, Henrich-Shell CL, Carnell N, Stumbo P, Mock NI. 3-hydroxypropionic acid and methylcitric acid are not reliable indicators of marginal biotin deficiency in humans. J. Nutr.134(2), 317–320 (2004).
  • Mock DM, Dyken ME. Biotin catabolism is accelerated in adults receiving long-term therapy with anticonvulsants. Neurology49(5), 1444–1447 (1997).
  • Mock DM, Dyken ME. Biotin deficiency results from long-term therapy with anticonvulsants. Gastroenterology108(4), A740 (1995).
  • Khalidi N, Wesley JR, Thoene JG, Whitehouse WM Jr, Baker WL. Biotin deficiency in a patient with short bowel syndrome during home parenteral nutrition. JPEN J. Parenter. Enteral. Nutr.8, 311–314 (1984).
  • Zempleni J, Trusty TA, Mock DM. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liver. J. Nutr.127(9), 1776–1781 (1997).
  • Anagnostouli M, Livaniou E, Nyalala JO et al. Cerebrospinal fluid levels of biotin in various neurological disorders. Acta Neurol. Scand.99(6), 387–392 (1999).
  • Green NM. Avidin. Adv. Protein Chem.29, 85–133 (1975).
  • Sealey WM, Teague AM, Stratton SL, Mock DM. Smoking accelerates biotin catabolism in women. Am. J. Clin. Nutr.80(4), 932–935 (2004).
  • Atamna H, Newberry J, Erlitzki R, Schultz CS, Ames BN. Biotin deficiency inhibits heme synthesis and impairs mitochondria in human lung fibroblasts. J. Nutr.137(1), 25–30 (2007).
  • Velazquez A, Martin-del-Campo C, Baez A et al. Biotin deficiency in protein-energy malnutrition. Eur. J. Clin. Nutr.43, 169–173 (1988).
  • Teran-Garcia M, Ibarra I, Velazquez A. Urinary organic acids in infant malnutrition. Pediatr. Res.44(3), 386–391 (1998).
  • Burri BJ, Sweetman L, Nyhan WL. Mutant holocarboxylase synthetase: evidence for the enzyme defect in early infantile biotin-responsive multiple carboxylase deficiency. J. Clin. Invest.68(6), 1491–1495 (1981).
  • Burri BJ, Sweetman L, Nyhan WL. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency. Am. J. Hum. Genet.37(2), 326–337 (1985).
  • Baumgartner ER, Suormala T. Multiple carboxylase deficiency: inherited and acquired disorders of biotin metabolism. Int. J. Vitam. Nutr. Res.67(5), 377–384 (1997).
  • Wolf B, Raetz H. The measurement of propionyl-CoA carboxylase and pyruvate carboxylase activity in hair roots: its use in the diagnosis of inherited biotin-dependent enzyme deficiencies. Clinica Chim. Acta130, 25–30 (1983).
  • Mardach R, Zempleni J, Wolf B et al. Biotin dependency due to a defect in biotin transport. J. Clin. Invest.109, 1617–1623 (2002).
  • Hymes J, Stanley CM, Wolf B. Mutations in BTD causing biotinidase deficiency. Hum. Mutat.18(5), 375–381 (2001).
  • Moslinger D, Muhl A, Suormala T, Baumgartner R, Stockler-Ipsiroglu S. Molecular characterisation and neuropsychological outcome of 21 patients with profound biotinidase deficiency detected by newborn screening and family studies. Eur. J. Pediatr.162(Suppl. 1), S46–S49 (2003).
  • Laszlo A, Schuler EA, Sallay E et al. Neonatal screening for biotinidase deficiency in Hungary: clinical, biochemical and molecular studies. J. Inherit. Metab. Dis.26(7), 693–698 (2003).
  • Neto EC, Schulte J, Rubim R et al. Newborn screening for biotinidase deficiency in Brazil: biochemical and molecular characterizations. Braz. J. Med. Biol. Res.37(3), 295–299 (2004).
  • Mock DM. Biotin. In: Handbook of Vitamins. Rucker RB, Zempleni J, Suttie JW, McCormick DB (Eds). Taylor and Francis, Inc., FL, USA (2006)
  • Hymes J, Wolf B. Human biotinidase isn’t just for recycling biotin. J. Nutr.129(2 Suppl.), 485S–489S (1999).
  • Suormala T, Baumgartner ER, Bausch J, Holick W, Wick H. Quantitative determination of biocytin in urine of patients with biotinidase deficiency using high-performance liquid chromatography (HPLC). Clinica Chim. Acta177, 253–270 (1988).
  • Pabuccuoglu A, Aydogdu S, Bas M. Serum biotinidase activity in children with chronic liver disease and its clinical significance. J. Pediatr. Gastroenterol. Nutr.34(1), 59–62 (2002).
  • Wolf B, Heard GS. Biotinidase deficiency. In: Advances in Pediatrics. Barness, L, Oski, F (Eds). Medical Book Publishers, IL, USA 1–21 (1991).
  • Wolf B. Disorders of biotin metabolism. In: The Metabolic and Molecular Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill Inc, New York, NY, USA 3151–3177 (1995).
  • Suzuki Y, Yang X, Aoki Y, Kure S, Matsubara Y. Mutations in the holocarboxylase synthetase gene HLCS. Hum. Mutat.26(4), 285–290 (2005).
  • Gibson KM, Bennett MJ, Nyhan WL, Mize CE. Late-onset holocarboxylase synthetase deficiency. J. Inherit. Metab. Dis.19(6), 739–742 (1996).
  • Suormala T, Fowler B, Duran M et al. Five patients with a biotin-responsive defect in holocarboxylase formation: evaluation of responsiveness to biotin therapy in vivo and comparative biochemical studies in vitro. Pediatrics Res.41(5), 666–673 (1997).
  • Suormala T, Fowler B, Jakobs C et al. Late-onset holocarboxylase synthetase-deficiency: pre- and post-natal diagnosis and evaluation of effectiveness of antenatal biotin therapy. Eur. J. Pediatr.157(7), 570–575 (1998).
  • Wolf B. Worldwide survey of neonatal screening for biotinidase deficiency. J. Inher. Metab. Dis.14, 923–927 (1991).
  • Zaffanello M, Zamboni G, Fontana E, Zoccante L, Tato L. A case of partial biotinidase deficiency associated with autism. Child Neuropsychol.9(3), 184–188 (2003).
  • Baumgartner ER, Suormala T. Inherited defects of biotin metabolism. BioFactors (Oxford, England)10(2–3), 287–290 (1999).
  • Wolf B, Grier RE, Allen RJ, Goodman SI, Kien CL. Biotinidase deficiency: an enzymatic defect in late-onset multiple carboxylase deficiency. Clin. Chim. Acta131, 273–281 (1983).
  • Brenner C. Catalysis in the nitrilase superfamily. Curr. Opin. Struct. Biol.12(6), 775–782 (2002).
  • Maras B, Barra D, Dupre S, Pitari G. Is pantetheinase the actual identity of mouse and human vanin-1 proteins. FEBS Lett.461, 149–152 (1999).
  • Cole H, Reynolds TR, Lockyer JM et al. Human serum biotinidase cDNA cloning, sequence, and characterization. J. Biol. Chem.269(9), 6566–6570 (1994).
  • Cole Knight H, Reynolds TR, Meyers GA et al. Structure of the human biotinidase gene. Mamm. Genome9, 327–330 (1998).
  • Stanley CM, Hymes J, Wolf B. Identification of alternatively spliced human biotinidase mRNAs and putative localization of endogenous biotinidase. Mol. Genet. Metab.81(4), 300–312 (2004).
  • Pomponio RJ, Narasimhan V, Reynolds TR et al. Deletion/insertion mutation that causes biotinidase deficiency may result from the formation of a quasipalindromic structure. Hum. Mol. Genet.5(10), 1657–1661 (1996).
  • Nilsson L, Ronge E. Lipoamidase and biotinidase deficiency: evidence that lipoamidase and biotinidase are the same enzyme in human serum. Eur. J. Clin. Chem. Clin. Biochem.30, 119–126 (1992).
  • Garganta CL, Wolf B. Lipoamidase activity in human serum is due to biotinidase. Clin. Chim. Acta189(3), 313–325 (1990).
  • Pispa J. Animal biotinidase. Ann. Med. Exp. Biol. Fenniae43, 4–39 (1965).
  • Chew YC, Sarath G, Zempleni J. An avidin-based assay for quantification of histone debiotinylase activity in nuclear extracts from eukaryotic cells. J. Nutr. Biochem.18, 475–481 (2007).
  • Pindolia K, Jensen K, Wolf B. Three dimensional structure of human biotinidase: computer modeling and functional correlations. Mol. Genet. Metab.92(1–2), 13–22 (2007).
  • Swango KL, Wolf B. Conservation of biotinidase in mammals and identification of the putative biotinidase gene in Drosophila melanogaster. Mol. Genet. Metabol.74, 492–499 (2001).
  • Blanton SH, Pandya A, Landa BL et al. Fine mapping of the human biotinidase gene and haplotype analysis of five common mutations. Hum. Hered.50(2), 102–111 (2000).
  • Wolf B, Jensen K, Huner G et al. Seventeen novel mutations that cause profound biotinidase deficiency. Mol. Genet. Metab.77(1–2), 108–111 (2002).
  • Pomponio RJ, Reynolds TR, Cole H, Buck GA, Wolf B. Mutational hotspot in the human biotinidase gene causes profound biotinidase deficiency. Nat. Genet.11, 96–98 (1995).
  • Wolf B, Feldman GL. The biotin-dependent carboxylase deficiencies. Am. J. Hum. Genet.34, 699–716 (1982).
  • Thoene J, Wolf B. Biotinidase deficiency in juvenile multiple carboxylase deficiency. Lancet2(8346), 398 (1983).
  • Muhl A, Moslinger D, Item CB, Stockler-Ipsiroglu S. Molecular characterisation of 34 patients with biotinidase deficiency ascertained by newborn screening and family investigation. Eur. J. Hum. Genet.9(4), 237–243 (2001).
  • Wolffe A. Chromatin. Academic Press, CA, USA (1998).
  • Gorovsky MA. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure of eukaryotic nuclei. J. Protozool.20, 19–25 (1973).
  • Mathis DJ, Oudet P, Waslyk B, Chambon P. Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Res.5, 3523–3547 (1978).
  • Brownell JE, Zhou J, Ranalli T et al.Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell84(6), 843–851 (1996).
  • Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to a yeast transcriptional regulator Rpd3. Science272, 408–411 (1996).
  • Jenuwein T, Allis CD. Translating the histone code. Science293, 1074–1080 (2001).
  • Pham A-D, Sauer F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science289, 2357–2360 (2000).
  • Ausio J, van Holde KE. Histone hyperacetylation: its effect on nucleosome conformation and stability. Biochemistry25, 1421–1428 (1986).
  • Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J.7(5), 1395–1402 (1988).
  • Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell72, 73–84 (1993).
  • Chambon P, Weill JD, Doly J, Strosser MT, Mandel P. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem. Biophys. Res. Commun.25, 638–643 (1966).
  • Boulikas T. At least 60 ADP-ribosylated variant histones are present in nuclei from dimethylsulfate-treated and untreated cells. EMBO J.7(1), 57–67 (1988).
  • Boulikas T, Bastin B, Boulikas P, Dupuis G. Increase in histone poly(ADP-ribosylation) in mitogen-activated lymphoid cells. Exp. Cell Res.187(1), 77–84 (1990).
  • Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr. Opin. Cell Biol.15, 172–183 (2003).
  • Stanley JS, Griffin JB, Zempleni J. Biotinylation of histones in human cells: effects of cell proliferation. Eur. J. Biochem.268, 5424–5429 (2001).
  • Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J. Lysine residues in N- and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J. Nutr. Biochem.17(4), 225–233 (2006).
  • Kobza K, Camporeale G, Rueckert B et al. K4, K9, and K18 in human histone H3 are targets for biotinylation by biotinidase. FEBS J.272, 4249–4259 (2005).
  • Kobza K, Sarath G, Zempleni J. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3. BMB Reports41, 310–315 (2008).
  • Camporeale G, Shubert EE, Sarath G, Cerny R, Zempleni J. K8 and K12 are biotinylated in human histone H4. Eur. J. Biochem.271, 2257–2263 (2004).
  • Bailey LM, Ivanov RA, Wallace JC, Polyak SW. Artifactual detection of biotin on histones by streptavidin. Anal. Biochem.373(1), 71–77 (2008).
  • Kothapalli N, Sarath G, Zempleni J. Biotinylation of K12 in histone H4 decreases in response to DNA double strand breaks in human JAr choriocarcinoma cells. J. Nutr.135, 2337–2342 (2005).
  • Camporeale G, Zempleni J, Eissenberg JC. Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogasterare caused by decreased biotinylation of histones, not of carboxylases. J. Nutr.137, 885–889 (2007).
  • Camporeale G, Oommen AM, Griffin JB, Sarath G, Zempleni J. K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J. Nutr. Biochem.18, 760–768 (2007).
  • Chew YC, West JT, Zempleni J. K12 biotinylated histone H4 is enriched at human endogenous retrovirus promoter regions and may function in retroviral silencing. FASEB J.21, 855 (2007).
  • Gralla M, Camporeale G, Zempleni J. Holocarboxylase synthetase regulates expression of biotin transporters by chromatin remodeling events at the SMVT locus. J. Nutr. Biochem.19, 400–408 (2008).
  • Smith EM, Hoi JT, Eissenberg JC et al. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J. Nutr.137, 2006–2012 (2007).
  • Hymes J, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem. Mol. Med.56(1), 76–83 (1995).
  • Ballard TD, Wolff J, Griffin JB et al. Biotinidase catalyzes debiotinylation of histones. Eur. J. Nutr.41, 78–84 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.