173
Views
21
CrossRef citations to date
0
Altmetric
Reviews

In vitro diagnosis of Hymenoptera venom allergy and further development of component resolved diagnostics

, , , , &

References

  • Ebo DG, Hagendorens MM, Stevens WJ. Hymenoptera venom allergy. Expert Rev Clin Immunol 2005;1(1):169-75
  • Bonifazi F, Jutel M, Bilo B, et al. Prevention and treatment of Hymenoptera venom allergy: guidelines for clinical practice. Allergy 2005;60(12):1459-70
  • Bonadonna P, Zanotti R, Muller U. Mastocytosis and insect venom allergy. Curr Opin Allergy Clin Immunol 2010;10(4):347-53
  • Krishna MT, Ewan PW, Diwakar L, et al. Diagnosis and management of Hymenoptera venom allergy: british Society for Allergy and Clinical Immunology (BSACI) guidelines. Clin Exp Allergy 2011;41(9):1201-20
  • Golden DB, Mofitt J, Nicklas RA, et al. Stinging insect hypersensitivity: a practice parameter update 2011. J Allergy Clin Immunol 2011;127(4):852-4
  • Ebo DG, Faber M, Sabato V, et al. Component-resolved diagnosis of wasp (yellow jacket) venom allergy. Clin Exp Allergy 2013;43(2):255-61
  • Egner W, Ward C, Brown DL, Ewan PW. The frequency and clinical significance of specific IgE to both wasp (Vespula) and honey-bee (Apis) venoms in the same patient. Clin Exp Allergy 1998;28(1):26-34
  • Hemmer W, Focke M, Kolarich D, et al. Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. J Allergy Clin Immunol 2001;108(6):1045-52
  • Jappe U, Raulf-Heimsoth M, Hoffmann M, et al. In vitro hymenoptera venom allergy diagnosis: improved by screening for cross-reactive carbohydrate determinants and reciprocal inhibition. Allergy 2006;61(10):1220-9
  • Müller UR, Johansen N, Petersen AB, et al. Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy 2009;64(4):543-8
  • Sturm GJ, Jin C, Kranzelbinder B, et al. Inconsistent results of diagnostic tools hamper the differentiation between bee and vespid venom allergy. PLoS One 2011;6(6):e20842
  • Eberlein B, Krischan L, Darsow U, et al. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J Allergy Clin Immunol 2012;130(1):155-61
  • Vos B, Kohler J, Muller S, et al. Improved diagnosis of wasp venom allergy by IgE detection to wasp venom extract spiked with rVes v 5. Allergy 2012;67:613-13
  • Brehler R, Grundmann S, Stocker B. Cross-reacting carbohydrate determinants and hymenoptera venom allergy. Curr Opin Allergy Clin Immunol 2013;13(4):360-4
  • Aalberse RC, Koshte V, Clemens JG. Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and Hymenoptera venom. J Allergy Clin Immunol 1981;68(5):356-64
  • Ebo DG, Hagendorens MM, Bridts CH, et al. Sensitization to cross-reactive carbohydrate determinants and the ubiquitous protein profilin: mimickers of allergy. Clin Exp Allergy 2004;34(1):137-44
  • Mertens M, Brehler R. Suitability of different glycoproteins and test systems for detecting cross-reactive carbohydrate determinant-specific IgE in hymenoptera venom-allergic patients. Int Arch Allergy Immunol 2011;156(1):43-50
  • Blank S, Neu C, Hasche D, et al. Polistes species venom is devoid of carbohydrate-based cross-reactivity and allows interference-free diagnostics. J Allergy Clin Immunol 2013;131:1239-42
  • Stevens WJ, Ebo DG, De Clerck LS, et al. Evolution of lymphocyte transformation to wasp venom antigen during immunotherapy for wasp venom anaphylaxis. Clin Exp Allergy 1998;28(2):249-52
  • Nakagawa T, Stadler BM, de Weck AL. Flow-cytometric analysis of human basophil degranulation. I. Quantification of human basophils and their degranulation by flow-cytometry. Allergy 1981;36(1):39-47
  • Knol EF, Mul FP, Jansen H, et al. Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol 1991;88(3 Pt 1):328-38
  • Ebo DG, Hagendorens MM, Bridts CH, et al. In vitro allergy diagnosis: should we follow the flow? Clin Exp Allergy 2004;34(3):332-9
  • Ebo DG, Hagendorens MM, Bridts CH, et al. Hymenoptera venom allergy: taking the sting out of difficult cases. J Investig Allergol Clin Immunol 2007;17(6):357-60
  • Korosec P, Silar M, Erzen R, et al. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. Int Arch Allergy Immunol 2013;161(4):363-8
  • Bar-Sela S, Shalit M, Kalbfleisch JH, Fink JN. The relative value of skin tests and radioallergosorbent test in the diagnosis of bee sting hypersensitivity. J Allergy Clin Immunol 1983;72(6):690-4
  • Bilo BM, Rueff F, Mosbech H, et al. Diagnosis of Hymenoptera venom allergy. Allergy 2005;60(11):1339-49
  • Gonzalez-de-Olano D, Alvarez-Twose I, Morgado JM, et al. Evaluation of basophil activation in mastocytosis with Hymenoptera venom anaphylaxis. Cytometry B Clin Cytom 2011;80(3):167-75
  • Bonadonna P, Zanotti R, Melioli G, et al. The role of basophil activation test in special populations with mastocytosis and reactions to hymenoptera sting. Allergy 2012;67(7):962-5
  • Erdmann SM, Sachs B, Kwiecien R, et al. The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immunotherapy. Allergy 2004;59(10):1102-9
  • Ebo DG, Hagendorens MM, Schuerwegh AJ, et al. Flow-assisted quantification of in vitro activated basophils in the diagnosis of wasp venom allergy and follow-up of wasp venom immunotherapy. Cytometry B Clin Cytom 2007;72(3):196-203
  • Peternelj A, Silar M, Erzen R, et al. Basophil sensitivity in patients not responding to venom immunotherapy. Int Arch Allergy Immunol 2008;146(3):248-54
  • Verweij MM, De Knop KJ, Bridts CH, et al. P38 mitogen-activated protein kinase signal transduction in the diagnosis and follow up of immunotherapy of wasp venom allergy. Cytometry B Clin Cytom 2010;78(5):302-7
  • Verweij MM, Sabato V, Nullens S, et al. STAT5 in human basophils: IL-3 is required for its FcepsilonRI-mediated phosphorylation. Cytometry B Clin Cytom 2012;82(2):101-6
  • Nullens S, Sabato V, Faber M, et al. Basophilic histamine content and release during venom immunotherapy: Insights by flow cytometry. Cytometry Part B. Clinical Cytometry 2013;84B(3):173-8
  • Sainte-Laudy J, Sabbah A, Drouet M, et al. Diagnosis of venom allergy by flow cytometry. Correlation with clinical history, skin tests, specific IgE, histamine and leukotriene C4 release. Clin Exp Allergy 2000;30(8):1166-71
  • Mittermann I, Zidarn M, Silar M, et al. Recombinant allergen-based IgE testing to distinguish bee and wasp allergy. J Allergy Clin Immunol 2010;125(6):1300-7
  • Hofmann SC, Pfender N, Weckesser S, et al. Added value of IgE detection to rApi m 1 and rVes v 5 in patients with Hymenoptera venom allergy. J Allergy Clin Immunol 2011;127(1):265-7
  • Sturm GJ, Bilo MB, Bonadonna P, et al. Ves v 5 can establish the diagnosis in patients without detectable specific IgE to wasp venom and a possible north-south difference in Api m 1 sensitization in Europe. J Investig Allergol Clin Immunol 2012;130(3):817-17
  • Neis MM, Merk HF. Value of component based diagnostics in IgE-mediated hymenoptera sting reactions. Cutan Ocul Toxicol 2012;31(2):117-23
  • Muller U, Schmid-Grendelmeier P, Hausmann O, Helbling A. IgE to recombinant allergens Api m 1, Ves v 1, and Ves v 5 distinguish double sensitization from crossreaction in venom allergy. Allergy 2012;67(8):1069-73
  • Sturm GJ, Hemmer W, Hawranek T, et al. Detection of IgE to recombinant Api m 1 and rVes v 5 is valuable but not sufficient to distinguish bee from wasp venom allergy. J Allergy Clin Immunol 2011;128(1):247-8
  • Jakob T, Kohler J, Blank S, et al. Comparable IgE reactivity to natural and recombinant Api m 1 in cross-reactive carbohydrate determinant-negative patients with bee venom allergy. J Allergy Clin Immunol 2012;130(1):276-8
  • Köhler J, Blank S, Müller S, et al. IgE reactivity to a broad panel of CCD free bee venom allergen reveals diverse sensitisation profiles in bee venom allergic patients. Allergy 2013;68(Suppl 97):21-1
  • Monsalve RI, Vega A, Marques L, et al. Component-resolved diagnosis of vespid venom-allergic individuals: phospholipases and antigen 5s are necessary to identify Vespula or Polistes sensitization. Allergy 2012;67(4):528-36
  • Muller UR. Hymenoptera venom proteins and peptides for diagnosis and treatment of venom allergic patients. Inflamm Allergy Drug Targets 2011;10(5):420-8
  • Borer AS, Wassmann P, Schmidt M, et al. Crystal structure of Sol I. 2: a major allergen from fire ant venom. J Mol Biol 2012;415(4):635-48
  • Lockwood SA, Haghipour-Peasley J, Hoffman DR, Deslippe RJ. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae). Toxicon 2012;60(5):752-9
  • Donovan GR, Baldo BA, Sutherland S. Molecular cloning and characterization of a major allergen (Myr p I) from the venom of the Australian jumper ant, Myrmecia pilosula. Biochim Biophys Acta 1993;1171(3):272-80
  • Davies NW, Wiese MD, Brown SG. Characterisation of major peptides in ‘jack jumper’ ant venom by mass spectrometry. Toxicon 2004;43(2):173-83
  • Wiese MD, Brown SG, Chataway TK, et al. Myrmecia pilosula (Jack Jumper) ant venom: identification of allergens and revised nomenclature. Allergy 2007;62(4):437-43
  • Wiese MD, Chataway TK, Davies NW, et al. Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon 2006;47(2):208-17
  • Lee EK, Jeong KY, Lyu DP, et al. Characterization of the major allergens of Pachycondyla chinensis in ant sting anaphylaxis patients. Clin Exp Allergy 2009;39(4):602-7
  • Hoffman DR. Ant venoms. Curr Opin Allergy Clin Immunol 2010;10(4):342-6
  • Allergen nomenclature. Available from: www.allergen.org/Allergen.aspx
  • Kemeny DM, Harries MG, Youlten LJF, et al. Antibodies to purified bee venom proteins and peptides. I. Development of a highly specific RAST for bee venom antigens and its application to bee sting allergy. J Investig Allergol Clin Immunol 1983;71(5):505-14
  • Seismann H, Blank S, Braren I, et al. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 2010;47(4):799-808
  • Casteleijn MG, Urtti A, Sarkhel S. Expression without boundaries: cell-free protein synthesis in pharmaceutical research. Int J Pharm 2013;440(1):39-47
  • Berneder M, Bublin M, Hoffmann-Sommergruber K, et al. Allergen chip diagnosis for soy-allergic patients: Gly m 4 as a marker for severe food-allergic reactions to soy. Int Arch Allergy Immunol 2013;161(3):229-33
  • Li ZX, Zhang YQ, Pawar R, et al. Development of an Optimized Protein Chip for the Detection of Fish Parvalbumin Allergen. Curr Anal Chem 2012;8(1):349-56
  • de Graaf DC, Aerts M, Danneels E, Devreese B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteomics 2009;72(2):145-54
  • Santos LD, Pieroni M, Menegasso ARS, et al. A new scenario of bioprospecting of Hymenoptera venoms through proteomic approach. Journal of Venomous Animals and Toxins Including Tropical Diseases 2011;17(4):364-77
  • Peiren N, Vanrobaeys F, de Graaf DC, et al. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochimica et Biophysica Acta-Proteins and Proteomics 2005;1752(1):1-5
  • de Graaf DC, Brunain M, Scharlaken B, et al. Two novel proteins expressed by the venom glands of Apis mellifera and Nasonia vitripennis share an ancient C1q-like domain. Insect Mol Biol 2010(19 Suppl 1):1-10
  • Elsik CG, Worley KC, Bennett AK, et al. Finding the missing honey bee genes: lessons learned from a genome upgrade. Bmc Genomics 2014; In press
  • Van Vaerenberg M, De Byser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteomics 2014; Accepted
  • Calvete JJ, Fasoli E, Sanz L, et al. Exploring the Venom Proteome of the Western Diamondback Rattlesnake, Crotalus atrox, via Snake Venomics and Combinatorial Peptide Ligand Library Approaches. J Proteome Res 2009;8(6):3055-67
  • Fasoli E, Farinazzo A, Sun CJ, et al. Interaction among proteins and peptide libraries in proteome analysis: pH involvement for a larger capture of species. J Proteomics 2010;73(4):733-42
  • Fasoli E, Sanz L, Wagstaff S, et al. Exploring the venom proteome of the African puff adder, Bitis arietans, using a combinatorial peptide ligand library approach at different pHs. J Proteomics 2010;73(5):932-42
  • Baykut G, Jertz R, Witt M. Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry with pulsed in-source collision gas and in-source ion accumulation. Rapid Commun Mass Spectrom 2000;14(14):1238-47
  • Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998;17(1):1-35
  • de Graaf DC, Aerts M, Brunain M, et al. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol 2010;19(Suppl 1):11-26
  • Werren JH, Richards S, Desjardins CA, et al. Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species. Science 2010;327(5963):343-8
  • Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 2008;27:661-99
  • Resende VM, Vasilj A, Santos KS, et al. Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics 2013;13(17):2638-48
  • Evans JD, Brown SJ, Hackett KJ, et al. The i5K initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 2013;104:595-600
  • Platz IJ, Binder M, Marxer A, et al. Hymenoptera-venom-induced upregulation of the basophil activation marker ecto-nucleotide pyrophosphatase/phosphodiesterase 3 in sensitized individuals. Int Arch Allergy Immunol 2001;126(4):335-42
  • Sturm GJ, Bohm E, Trummer M, et al. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study. Allergy 2004;59(10):1110-17
  • Lambert C, Guilloux L, Dzviga C, et al. Flow cytometry versus histamine release analysis of in vitro basophil degranulation in allergy to Hymenoptera venom. Cytometry B Clin Cytom 2003;52(1):13-19
  • Eberlein-Konig B, Schmidt-Leidescher C, Rakoski J, et al. In vitro basophil activation using CD63 expression in patients with bee and wasp venom allergy. J Investig Allergol Clin Immunol 2006;16(1):5-10
  • Scherer K, Weber JM, Jermann TM, et al. Cellular in vitro assays in the diagnosis of Hymenoptera venom allergy. Int Arch Allergy Immunol 2008;146(2):122-32
  • IUIS Allergen Nomenclature List. Available from: www.allergen.org/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.