45
Views
1
CrossRef citations to date
0
Altmetric
Review

B-cell subsets: cellular interactions and relevance in multiple sclerosis

, &
Pages 73-83 | Published online: 10 Jan 2014

References

  • Kantarci O, Wingerchuk D. Epidemiology and natural history of multiple sclerosis: new insights. Curr. Opin. Neurol. 19, 248–254 (2006).
  • Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol. 5, 343–354 (2006).
  • DeLuca GC, Williams K, Evangelou N, Ebers GC, Esiri M. The contribution of demyelination to axonal loss in multiple sclerosis. Brain 129, 1507–1516 (2006).
  • DeStefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann. Neurol. 38, 901–909 (1995).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
  • Revesz T, Kidd D, Thompson AJ, Barnard RO, McDonald WI. A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain 117, 759–765 (1994).
  • Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl Acad. Sci. USA 100, 12877–12882 (2003).
  • GAMES; Transatlantic Multiple Sclerosis Genetics Cooperative .A meta-analysis of whole genome linkage screens in multiple sclerosis. J. Neuroimmunol. 143, 39–46 (2003).
  • Gilden DH. Infectious causes of multiple sclerosis. Lancet Neurol. 4, 195–202 (2005).
  • Butcher PJ. Milk consumption and multiple sclerosis – an etiological hypothesis. Med. Hypotheses 19, 169–178 (1986).
  • Owens T. Animal models for multiple sclerosis. Adv. Neurol. 98, 77–89 (2006).
  • Sriram S, Steiner, I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol. 58, 939–945 (2005).
  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).
  • Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).
  • Lunemann JD, Ruckert S, Kern F et al. Cross-sectional and longitudinal analysis of myelin-reactive T cells in patients with multiple sclerosis. J. Neurol. 251, 1111–1120 (2004).
  • Traugott U, Reinherz EL, Raine CS. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219, 308–310 (1983).
  • Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler D. A γδ T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl Acad. Sci. USA 89, 4588–4592 (1992).
  • Prineas JW, Wright RG. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 38, 409–421 (1978).
  • Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr CH, Weiner L. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 19, 578–587 (1986).
  • Plumb J, Armstrong MA, Duddy M, Mirakhur M, McQuaid S. CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult. Scler. 9, 142–147 (2003).
  • Bailey SL, Carpentier PA, McMahon EJ, Begolka WSS, Miller D. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol. 26, 149–188 (2006).
  • Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747–1763 (2005).
  • Delgado SW, Sheremata A. The role of CD4+ T-cells in the development of MS. Neurol. Res. 28, 245–249 (2006).
  • Linsen L, Somers V, Stinissen P. Immunoregulation of autoimmunity by natural killer T cells. Hum. Immunol. 66, 1193–1202 (2005).
  • Bielekova B, Catalfamo M, Reichert-Scrivner S et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 5941–5946 (2006).
  • Baxter AG, Smyth MJ. The role of NK cells in autoimmune disease. Autoimmunity 35, 1–14 (2002).
  • Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J. Clin. Invest. 101, 725–730 (1998).
  • vanOosten B, Lai W, Barkhof MF et al. A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis. Mult. Scler. 1, 339–342 (1996).
  • Coles A, Deans J, Compston A. Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench. Clin. Neurol. Neurosurg. 106, 270–274 (2004).
  • Hume DA. The mononuclear phagocyte system. Curr. Opin. Immunol. 18, 49–53 (2006).
  • Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).
  • Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Bio. 75, 388–397 (2004).
  • McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 313, 259–269 (2003).
  • Fischer HG, Reichmann G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166, 2717–2726 (2001).
  • Kabat E, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am. J. Med. 4, 653–662 (1948).
  • Cross AH, Trotter JL, Lyons J. B cells and antibodies in CNS demyelinating disease. J. Neuroimmunol. 112, 1–14 (2001).
  • Blom B, Spits H. Development of human lymphoid cells. Ann. Rev. Immunol. 24, 287–320 (2006).
  • Thomas MD, Srivastava B, Allman D. Regulation of peripheral B cell maturation. Cell. Immunol. 239, 92–102 (2006).
  • Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory B-cell marker. Immunol. Today 21, 204–206 (2000).
  • Baumgarth N. A two-phase model of B-cell activation. Immunol. Rev. 176, 171–180 (2000).
  • McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).
  • Fayette J, Durand I, Bridon JM et al. Dendritic cells enhance the differentiation of naive B cells into plasma cells in vitro. Scand. J. Immunol. 48, 563–570 (1998).
  • Jego G, Pascual V, Palucka AK, Banchereau J. Dendritic cells control B cell growth and differentiation. Curr. Dir. Autoimmun. 8, 124–139 (2005).
  • Nishioka Y, Lipsky PE. The role of CD40-CD40 ligand interaction in human T cell-B cell collaboration. J. Immunol. 153, 1027–36 (1994).
  • vanKooten C, Banchereau J. Functions of CD40 on B cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 (1997).
  • Lenschow DJ, Sperling AI, Cooke MP et al. Differential up-regulation of the B7–1 and B7–2 co-stimulatory molecules after Ig receptor engagement by antigen. J. Immunol. 153, 1990–1997 (1994).
  • Harris DP, Haynes L, Sayles PC et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1, 475–482 (2000).
  • Schultze JL, Michalak S, Lowne J et al. Human non-germinal center B cell interleukin (IL)-12 production is primarily regulated by T cell signals CD40 ligand, interferon γ, and IL-10: role of B cells in the maintenance of T cell responses. J. Exp. Med. 189, 1–12 (1999).
  • Rincon M, Anguita J, Nakamura T, Fikrig ER, Flavell A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).
  • Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172, 3422–3427 (2004).
  • Garrone P, Neidhardt EM, Garcia E, Galibert L, van Kooten C Banchereau J. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J. Exp. Med. 182, 1265–1273 (1995).
  • Lagresle C, Mondière P, Bella C, Krammer PH, Defrance T. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1/Fas-mediated apoptosis. J. Exp. Med. 183, 1377–1388 (1996).
  • MacLennan IC. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).
  • Fecteau JF, Neron S. CD40 stimulation of human peripheral B lymphocytes: distinct response from naive and memory cells. J. Immunol. 171, 4621–4629 (2003).
  • Bar-Or A, Niino M, Duddy M, Bodner C: Abnormal B cell cytokine response in MS points to distinct roles for naive and memory human B cells in immune regulation. Clin. Immunol. 119(Suppl.), S26–S27 (2006) (Abstract).
  • Ngo VN, Korner H, Gunn MD et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).
  • Luther SA, Lopez T, Bai W, Hanahan DJ, Cyster G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).
  • Manz RA, Hauser AE, Hiepe F, Radbruch A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).
  • Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).
  • Dono M, Cerruti G, Zupo S. The CD5+ B-cell. Int. J. Biochem. Cell Biol. 36, 2105–2111 (2004).
  • Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).
  • Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).
  • Pestka S, Krause CD, Sarkar D, Walter MR, Shi YP, Fisher B. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 22, 929–979 (2004).
  • Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M et al Heat shock protein 60 activates B cells via the TLR4–MyD88 pathway. J. Immunol. 175, 3594–3602 (2005).
  • Lenert P, Brummel R, Field EH, Ashman RF. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J. Clin. Immunol. 25, 29–40 (2005).
  • Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RSA, Bhan K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).
  • Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501 (2003).
  • Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 1081–1089 (2001).
  • Bar-Or A, Oliveira EM, Anderson DE et al. Immunological memory: contribution of memory B cells expressing costimulatory molecules in the resting state. J. Immunol. 167, 5669–5677 (2001).
  • Cepok S, Jacobsen M, Schock S et al. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124, 2169–76 (2001).
  • Cepok S, Rosche B, Grummel V et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128, 1667–1676 (2005).
  • Corcione A, Aloisi F, Serafini B et al. B-cell differentiation in the CNS of patients with multiple sclerosis. Autoimmun. Rev. 4, 549–554 (2005).
  • Uccelli A, Aloisi F, Pistoia V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol. 26, 254–259 (2005).
  • Krumbholz M, Theil D, Cepok S et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2005).
  • Cepok S, von Geldern G, Grummel V et al. 2006 Accumulation of class switched IgD–IgM- memory B cells in the cerebrospinal fluid during neuroinflammation. J. Neuroimmunol. 180, 33–9 (2006).
  • Krumbholz M, Theil D, Derfuss T et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med.. 201, 195–200 (2005).
  • Walsh MJ, Tourtelotte WW, Roman J, Dreyer W. Immunoglobulin G, A and M-clonal restriction in multiple sclerosis cerebrospinal fluid and serum-analysis by two-dimensional electrophoresis. Clin Immunol Immunopathol 35, 313–327 (1985).
  • Genain CP, Cannella B, Hauser SL, Raine CS. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).
  • Lennon VA, Wingerchuk DM, Kryzer TJ et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).
  • Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med.. 202, 473–477 (2005).
  • Gay FW, Drye TJ, Dick GW, Esiri MM. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesions. Brain 120, 1461–1483 (1997).
  • Esiri MM. Immunoglobulin-containing cells in multiple-sclerosis plaques. Lancet 2, 478 (1977).
  • Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest. 102, 1045–1050 (1998).
  • Alter A, Duddy M, Hebert S et al Determinants of human B cell migration across brain endothelial cells. J. Immunol. 170, 4497–4505 (2003).
  • Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch. Neurol. 62, 258–264 (2005).
  • Stuve O, Cepok S, Elias B et al. Clinical stabilization and effective B-lymphocyte depletion in the cerebrospinal fluid and peripheral blood of a patient with fulminant relapsing-remitting multiple sclerosis. Arch. Neurol. 62, 1620–1623 (2005).
  • Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of muliple sclerosis patients. J. Neuroimmunol. 180(1–2), 63–70 (2006).
  • Baranzini SE, Jeong MC, Butunoi C, Murray RS, Bernard CC, Oksenberg JR. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J. Immunol. 163, 5133–5144 (1999).
  • Owens GP, Kraus H, Burgoon MP et al. Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann. Neurol. 43, 236–243 (1998).
  • Smith-Jenson T, Burgoon MP, Anthony J et al. Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54, 1227–1232 (2000).
  • Colombo M, Dono M, Gazzola P et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 164, 2782–2789 (2000).
  • Mallison SM, Smith JP, Schenkein HA, Tew JG. Accumulation of plasma cells in inflamed sites: effects of antigen, nonspecific microbial activators, and chronic inflammation. Infect. Immun. 59, 4019–4025 (1991).
  • Prineas JW, Wright RG. Multiple Sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord Science 203, 1123–1125 (1979).
  • Meinl E, Krumbholz M, Hohlfeld R. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 59, 880–892 (2006).
  • Genc K, Dona DL, Reder AT. Increased CD80+ B cells in active multiple sclerosis and reversal by interferon beta-1β therapy. J. Clin. Invest. 99, 2664–2671 (1997).
  • Rodriguez-Pinto, D. B cells as antigen presenting cells. Cell. Immunol. 238, 67–75 (2005).
  • Hon H, Oran A, Brocker T, Jacob J. B lymphocytes participate in cross-presentation of antigen following gene gun vaccination. J. Immunol. 174, 5233–5242 (2005).
  • Durelli L, Cocito D, Riccio A et al. High-dose intravenous methylprednisolone in the treatment of multiple sclerosis: clinical-immunologic correlations. Neurology 36, 238–243 (1986).
  • Fog T. The long-term treatment of multiple sclerosis with corticoids. Acta Neurol. Scand. Suppl. 13, 473–484 (1965).
  • Griffiths TD, Newman PK. Steroids in multiple sclerosis. J. Clin. Pharm. Ther. 19, 219–222 (1994).
  • Frequin ST, Lamers KJ, Barkhof F, Borm GF, Hommes OR. Follow-up study of MS patients treated with high-dose intravenous methylprednisolone. Acta. Neurol. Scand. 90, 105–110 (1994).
  • Compston DA, Milligan NM, Hughes PJ et al. A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 2. Laboratory results. J. Neurol. Neurosurg. Psychiatry 50, 517–522 (1987).
  • Warren KG, Catz I, Jeffrey VM, Carroll DJ. Effect of methylprednisolone on CSF IgG parameters, myelin basic protein and anti-myelin basic protein in multiple sclerosis exacerbations. Can. J. Neurol. Sci. 13, 25–30 (1986).
  • Boylan MT, Crockard AD, McDonnell GV, Armstrong MA, Hawkins SA. CD80 (B7–1) and CD86 (B7–2) expression in multiple sclerosis patients: clinical subtype specific variation in peripheral monocytes and B cells and lack of modulation by high dose methylprednisolone. J. Neurol. Sci. 167, 79–89 (1999).
  • Crockard AD, Treacy MT, Droogan AG, McNeill TA, Hawkins SA. Transient immunomodulation by intravenous methylprednisolone treatment of multiple sclerosis. Mult. Scler. 1, 20–24 (1995).
  • Sellebjerg F, Barnes D, Filippini G et al. EFNS guideline on treatment of multiple sclerosis relapses: report of an EFNS task force on treatment of multiple sclerosis relapses. Eur. J. Neurol. 12, 939–946 (2005).
  • Goodin DS, Frohman EM, Garmany GP Jr et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 58, 169–178 (2002).
  • Keegan M, Konig F, McClelland R et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. 366, 579–582 (2005).
  • Wingerchuk DM. Neuromyelitis optica. Int. MS J. 13, 42–50 (2006).
  • Stangel M, Gold R. Intravenous Immunoglobulins in MS. Int. MS J. 12, 5–10 (2005).
  • Jiang H, Milo R, Swoveland P, Johnson KP, Panitch H, Dhib-Jalbu S. Interferon β-1b reduces interferon γ-induced antigen-presenting capacity of human glial and B cells. J. Neuroimmunol. 61, 17–25 (1995).
  • Liu Z, Pelfrey CM, Cotleur A, Lee JC, Rudick RA. Immunomodulatory effects of interferon β-1a in multiple sclerosis. J. Neuroimmunol. 112, 153–162 (2001).
  • Prat A, Al-Asmi A, Duquette P, Antel JP. Lymphocyte migration and multiple sclerosis: relation with disease course and therapy. Ann. Neurol. 46, 253–256 (1999).
  • Kim HJ, Ifergan I, Antel JP et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol. 172, 7144–7153 (2004).
  • Chan A, Weilbach FX, Toyka KV, Gold R. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin. Exp. Immunol. 139, 152–158 (2005).
  • Niino M, Bodner C, Simard M-L et al. Effects of natalizumab on immune responses in multiple sclerosis. Ann. Neurol. 59, 748–754 (2006).
  • Burt RK, Cohen B, Rose J et al. Haematopoietic stem cell transplantation for multiple sclerosis. Arch. Neurol. 62, 860–864 (2005).
  • Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64, 1270–1272 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.