233
Views
3
CrossRef citations to date
0
Altmetric
Review

Chemokines, chemokine receptors and CD4+CD25+ regulatory T cells

&
Pages 343-349 | Published online: 10 Jan 2014

References

  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Schwartz RH. Natural regulatory T cells and self-tolerance. Nat. Immunol.6(4), 327–330 (2005).
  • von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat. Immunol.6(4), 338–344 (2005).
  • Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat. Rev. Immunol.4(11), 841–855 (2004).
  • Almeida AR, Rocha B, Freitas AA, Tanchot C. Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin. Immunol.17(3), 239–249 (2005).
  • Akbari O, Stock P, DeKruyff RH, Umetsu DT. Role of regulatory T cells in allergy and asthma. Curr. Opin. Immunol.15(6), 627–633 (2003).
  • Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol.170(8), 3939–3943 (2003).
  • van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum.50(9), 2775–2785 (2004).
  • Huehn J, Hamann A. Homing to suppress: address codes for Treg migration. Trends Immunol.26(12), 632–636 (2005).
  • Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J. Exp. Med.201(7), 1037–1044 (2005).
  • Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med.195(12), 1641–1646 (2002).
  • D’Ambrosio D, Sinigaglia F, Adorini L. Special attractions for suppressor T cells. Trends Immunol.24(3), 122–126 (2003).
  • Murphy PM. International Union of Pharmacology. Update on chemokine receptor nomenclature. Pharmacol. Rev.54(2), 227–229 (2002).
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol.18, 217–242 (2000).
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004).
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med.354(6), 610–621 (2006).
  • Allen SJ, Crown SE, Handel TM. Chemokine:receptor structure, interactions, and antagonism. Annu. Rev. Immunol.25, 787–820 (2007).
  • Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science279(5349), 381–384 (1998).
  • Ploix C, Lo D, Carson MJ. A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J. Immunol.167(12), 6724–6730 (2001).
  • Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL. The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell. Immunol.231(1–2), 75–84 (2004).
  • Kim CH. The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr. Opin. Hematol.12(4), 298–304 (2005).
  • Wang X, Wang E, Kavanagh JJ, Freedman RS. Ovarian cancer, the coagulation pathway, and inflammation. J. Transl. Med.3, 25 (2005).
  • Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest.114(11), 1640–1649 (2004).
  • Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol.177(7), 4488–4494 (2006).
  • Iellem A, Mariani M, Lang R et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J. Exp. Med.194(6), 847–853 (2001).
  • Eksteen B, Miles A, Curbishley SM et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J. Immunol.177(1), 593–603 (2006).
  • Jenkins MK, Khoruts A, Ingulli E et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol.19, 23–45 (2001).
  • Lim HW, Broxmeyer HE, Kim CH. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J. Immunol.177(2), 840–851 (2006).
  • Wysocki CA, Jiang Q, Panoskaltsis-Mortari A et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood106(9), 3300–3307 (2005).
  • Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol.2(12), 1126–1132 (2001).
  • Szanya V, Ermann J, Taylor C, Holness C, Fathman CG. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol.169(5), 2461–2465 (2002).
  • Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood105(7), 2877–2886 (2005).
  • Huehn J, Siegmund K, Lehmann JC et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med.199(3), 303–313 (2004).
  • Bruhl H, Cihak J, Schneider MA et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J. Immunol.172(2), 890–898 (2004).
  • Fu S, Yopp AC, Mao X et al. CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. Am. J. Transplant.4(1), 65–78 (2004).
  • Lehmann J, Huehn J, de la Rosa M et al. Expression of the integrin α Eβ 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc. Natl Acad. Sci. USA99(20), 13031–13036 (2002).
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401(6754), 708–712 (1999).
  • Varona R, Cadenas V, Lozano M et al. CCR6 regulates the function of alloreactive and regulatory CD4+ T cells during acute graft-versus-host disease. Leuk. Lymphoma47(8), 1469–1476 (2006).
  • Lugering A, Floer M, Westphal S et al. Absence of CCR6 inhibits CD4+ regulatory T-cell development and M-cell formation inside Peyer’s patches. Am. J. Pathol.166(6), 1647–1654 (2005).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Osmond DG. Production and selection of B lymphocytes in bone marrow: lymphostromal interactions and apoptosis in normal, mutant and transgenic mice. Adv. Exp. Med. Biol.355, 15–20 (1994).
  • Zou L, Barnett B, Safah H et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res.64(22), 8451–8455 (2004).
  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature445(7130), 936–940 (2007).
  • Schaniel C, Pardali E, Sallusto F et al. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J. Exp. Med.188(3), 451–463 (1998).
  • Iellem A, Colantonio L, Bhakta S et al. Inhibition by IL-12 and IFN-α of I-309 and macrophage-derived chemokine production upon TCR triggering of human Th1 cells. Eur. J. Immunol.30(4), 1030–1039 (2000).
  • Selvan RS, Zhou LJ, Krangel MS. Regulation of I-309 gene expression in human monocytes by endogenous interleukin-1. Eur. J. Immunol.27(3), 687–694 (1997).
  • Schaerli P, Ebert L, Willimann K et al. A skin-selective homing mechanism for human immune surveillance T cells. J. Exp. Med.199(9), 1265–1275 (2004).
  • Sallusto F, Palermo B, Lenig D et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol.29(5), 1617–1625 (1999).
  • Tang HL, Cyster JG. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science284(5415), 819–822 (1999).
  • Kristensen NN, Gad M, Thomsen AR, Lu B, Gerard C, Claesson MH. CXC chemokine receptor 3 expression increases the disease-inducing potential of CD4+ CD25- T cells in adoptive transfer colitis. Inflamm. Bowel Dis.12(5), 374–381 (2006).
  • Chen D, Zhang N, Fu S et al. CD4+CD25+ regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes55(4), 1011–1021 (2006).
  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature393(6685), 595–599 (1998).
  • Tachibana K, Hirota S, Iizasa H et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature393(6685), 591–594 (1998).
  • Campbell JJ, Pan J, Butcher EC. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol.163(5), 2353–2357 (1999).
  • Kelner GS, Zlotnik A. Cytokine production profile of early thymocytes and the characterization of a new class of chemokine. J. Leukoc. Biol.57(5), 778–781 (1995).
  • McHugh RS, Whitters MJ, Piccirillo CA et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity16(2), 311–323 (2002).
  • Liu CY, Battaglia M, Lee SH, Sun QH, Aster RH, Visentin GP. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25- (nonregulatory) T cells. J. Immunol.174(5), 2680–2686 (2005).
  • Carvalho-Pinto C, Garcia MI, Gomez L et al. Leukocyte attraction through the CCR5 receptor controls progress from insulitis to diabetes in non-obese diabetic mice. Eur. J. Immunol.34(2), 548–557 (2004).
  • Cameron MJ, Arreaza GA, Grattan M et al. Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J. Immunol.165(2), 1102–1110 (2000).
  • Seifarth C, Mack M, Steinlicht S, Hahn EG, Lohmann T. Transient chemokine receptor blockade does not prevent, but may accelerate Type 1 diabetes in prediabetic NOD mice. Horm. Metab. Res.38(3), 167–171 (2006).
  • Tsibris AM, Kuritzkes DR. Chemokine antagonists as therapeutics: focus on HIV-1. Annu. Rev. Med.58, 445–459 (2007).
  • Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood104(3), 895–903 (2004).
  • Sebastiani S, Allavena P, Albanesi C et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J. Immunol.166(2), 996–1002 (2001).
  • Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J. Exp. Med.195(7), 869–879 (2002).
  • Kim CH, Johnston B, Butcher EC. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V α 24(+)V β 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood100(1), 11–16 (2002).
  • Thomas SY, Hou R, Boyson JE et al. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol.171(5), 2571–2580 (2003).
  • Uehara S, Song K, Farber JM, Love PE. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3(high)CD69+ thymocytes and γδTCR+ thymocytes preferentially respond to CCL25. J. Immunol.168(1), 134–142 (2002).
  • Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. Patterns of chemokine receptor expression on peripheral blood γ δ T lymphocytes: strong expression of CCR5 is a selective feature of V δ 2/V γ 9 γ δ T cells. J. Immunol.168(10), 4920–4929 (2002).

Website

  • Cytokine Family Database (dbCFC) http://cytokine.medic.kumamoto-u.ac.jp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.