48
Views
4
CrossRef citations to date
0
Altmetric
Review

Preclinical models of multiple sclerosis in nonhuman primates

, , &
Pages 749-761 | Published online: 10 Jan 2014

References

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47(6), 707–717 (2000).
  • Lassmann H. Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clin. Neurol. Neurosurg.104(3), 168–171 (2002).
  • Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain129(Pt 8), 1953–1971 (2006).
  • ‘t Hart B, Amor S, Jonker M. Evaluating the validity of animal models for research into therapies for immune-based disorders. Drug Discov. Today9(12), 517–524 (2004).
  • Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs16(3), 183–200 (2002).
  • Sachs DH. Tolerance: of mice and men. J. Clin. Invest.111(12), 1819–1821 (2003).
  • Adams AB, Williams MA, Jones TR et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest.111(12), 1887–1895 (2003).
  • Lassmann H, Ransohoff RM. The CD4–Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol.25(3), 132–137 (2004).
  • Wilkin TJ. The primary lesion theory of autoimmunity: a speculative hypothesis. Autoimmunity7(4), 225–235 (1990).
  • Rorke LB, Iwasaki Y, Koprowski H et al. Acute demyelinating disease in a chimpanzee three years after inoculation of brain cells from a patient with MS. Ann. Neurol.5(1), 89–94 (1979).
  • Wroblewska Z, Gilden D, Devlin M et al. Cytomegalovirus isolation from a chimpanzee with acute demyelinating disease after inoculation of multiple sclerosis brain cells. Infect. Immun.25(3), 1008–1015 (1979).
  • Scotet E, Peyrat MA, Saulquin X et al. Frequent enrichment for CD8 T cells reactive against common herpes viruses in chronic inflammatory lesions: towards a reassessment of the physiopathological significance of T cell clonal expansions found in autoimmune inflammatory processes. Eur. J. Immunol.29(3), 973–985 (1999).
  • Brok HP, Boven L, van Meurs M et al. The human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE in rhesus monkeys. J. Neuroimmunol.182(1–2), 135–152 (2007).
  • Rivers TM, Sprunt DH, Berry GP. Observations on the attempts to produce acute disseminated allergic encephalomyelitis in primates. J. Exp. Med.58, 39–53 (1933).
  • Rivers TM, Schwenkter FF. Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. Exp. Med.61, 698–703 (1935).
  • Kabat EA, Wolf A, Bezer AE. Studies on acute disseminated encephalomyelitis produced experimentally in rhesus monkeys. IV disseminated encephalomyelitis produced in monkeys with their own brain tissue. J. Exp. Med.89, 395– 399 (1949).
  • Geluk A, Elferink DG, Slierendregt BL et al. Evolutionary conservation of major histocompatibility complex-DR/peptide/T cell interactions in primates. J. Exp. Med.177(4), 979–987 (1993).
  • ‘t Hart BA, Elferink DG, Drijfhout JW et al. Liposome-mediated peptide loading of MHC–DR molecules in vivo.FEBS Lett.409(1), 91–95 (1997).
  • Rose LM, Richards TL, Petersen R, Peterson J, Hruby S, Alvord EC Jr. Remitting–relapsing EAE in nonhuman primates: a valid model of multiple sclerosis. Clin. Immunol. Immunopathol.59(1), 1–15 (1991).
  • Rose LM, Richards T, Alvord EC Jr. Experimental allergic encephalomyelitis (EAE) in nonhuman primates: a model of multiple sclerosis. Lab. Anim. Sci.44(5), 508–512 (1994).
  • ‘t Hart BA, Bauer J, Brok HP, Amor S. Non-human primate models of experimental autoimmune encephalomyelitis: variations on a theme. J. Neuroimmunol.168(1–2), 1–12 (2005).
  • Massacesi L, Genain CP, Lee-Parritz D, Letvin NL, Canfield D, Hauser SL. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann. Neurol.37(4), 519–530 (1995).
  • ‘t Hart BA, Laman JD, Bauer J, Blezer ED, van Kooyk Y, Hintzen RQ. Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol.3, 589–597 (2004).
  • Mansfield K. Marmoset models commonly used in biomedical research. Comp. Med.53(4), 383–392 (2003).
  • Haig D. What is a marmoset? Am. J. Primatol.49(4), 285–296 (1999).
  • Genain CP, Nguyen MH, Letvin NL et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J. Clin. Invest.96(6), 2966–2974 (1995).
  • Cadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI. Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proc. Natl Acad. Sci. USA94(26), 14536–14541 (1997).
  • Rolleke U, Flugge G, Plehm S et al. Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus). J. Neuroimmunol.176, 39–50 (2006).
  • Antunes SG, de Groot NG, Brok H et al. The common marmoset: a new world primate species with limited MHC class II variability. Proc. Natl Acad. Sci. USA95(20), 11745–11750 (1998).
  • Doxiadis GG, van der Wiel MK, Brok HP et al. Reactivation by exon shuffling of a conserved HLA-DR3-like pseudogene segment in a New World primate species. Proc. Natl Acad. Sci. USA103(15), 5864–5868 (2006).
  • Uccelli A, Oksenberg JR, Jeong MC et al. Characterization of the TCRB chain repertoire in the New World monkey Callithrix jacchus.J. Immunol.158(3), 1201–1207 (1997).
  • von Budingen HC, Hauser SL, Nabavi CB, Genain CP. Characterization of the expressed immunoglobulin IGHV repertoire in the New World marmoset Callithrix jacchus.Immunogenetics53(7), 557–563 (2001).
  • Villinger F, Bostik P, Mayne A et al. Cloning, sequencing, and homology analysis of nonhuman primate Fas/Fas-ligand and co-stimulatory molecules. Immunogenetics53(4), 315–328 (2001).
  • Brok HP, Hornby RJ, Griffiths GD, Scott LA, ‘t Hart BA. An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets in the common marmoset and the cotton-top tamarin. Cytometry45(4), 294–303 (2001).
  • ‘t Hart BA, Bauer J, Muller HJ et al. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am. J. Pathol.153(2), 649–663 (1998).
  • Brok HP, Bauer J, Jonker M et al. Non-human primate models of multiple sclerosis. Immunol. Rev.183, 173–185 (2001).
  • Smith PA, Heijmans N, Ouwerling B et al. Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi ABH mice. Eur. J. Immunol.35(4), 1311–1319 (2005).
  • Delarasse C, Daubas P, Mars LT et al. Myelin/oligodendrocyte glycoprotein-deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice. J. Clin. Invest.112(4), 544–553 (2003).
  • Brok HP, Uccelli A, Kerlero De Rosbo N et al. Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24–36 is presented by a monomorphic MHC class II molecule. J. Immunol.165(2), 1093–1101 (2000).
  • Mancardi G, ‘t Hart B, Roccatagliata L et al. Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J. Neurol. Sci.184(1), 41–49 (2001).
  • Ohler B, Graf K, Bragg R et al. Role of lipid interactions in autoimmune demyelination. Biochim. Biophys. Acta1688(1), 10–17 (2004).
  • Genain CP, Cannella B, Hauser SL, Raine CS. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med.5(2), 170–175 (1999).
  • Harari A, Zimmerli SC, Pantaleo G. Cytomegalovirus (CMV)-specific cellular immune responses. Hum. Immunol.65(5), 500–506 (2004).
  • Sylwester AW, Mitchell BL, Edgar JB et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med.202(5), 673–685 (2005).
  • Fabriek BO, Zwemmer JN, Teunissen CE et al.In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J. Neuroimmunol.161(1–2), 190–194 (2005).
  • de Vos AF, van Meurs M, Brok HP et al. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J. Immunol.169(10), 5415–5423 (2002).
  • Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol.2(4), 269–276 (1992).
  • Harling-Berg CJ, Park TJ, Knopf PM. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J. Neuroimmunol.101(2), 111–127 (1999).
  • Weller RO, Engelhardt B, Phillips MJ. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol.6(3), 275–288 (1996).
  • Lake J, Weller RO, Phillips MJ, Needham M. Lymphocyte targeting of the brain in adoptive transfer cryolesion-EAE. J. Pathol.187(2), 259–265 (1999).
  • Poser CM, Paty DW, Scheinberg L et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol.13(3), 227–231 (1983).
  • Barkhof F, Filippi M, Miller DH et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain120(Pt 11), 2059–2069 (1997).
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology33(11), 1444–1452 (1983).
  • Villoslada P, Hauser SL, Bartke I et al. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J. Exp. Med.191(10), 1799–1806 (2000).
  • ‘t Hart BA, Smith P, Amor S, Strijkers GJ, Blezer EL. MRI-guided immunotherapy development for multiple sclerosis in a primate. Drug Discov. Today11(1–2), 58–66 (2006).
  • Blezer EL, Bauer J, Brok HP, Nicolay K, ‘t Hart BA. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed.20(2), 90–103 (2007).
  • Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Invest.76(3), 355–364 (1997).
  • Laman JD, van Meurs M, Schellekens MM et al. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J. Neuroimmunol.86(1), 30–45 (1998).
  • Genain CP, Abel K, Belmar N et al. Late complications of immune deviation therapy in a nonhuman primate. Science274(5295), 2054–2057 (1996).
  • Lyons AB. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods243(1–2), 147–154 (2000).
  • Sharma R, Anker SD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int. J. Cardiol.85(1), 161–171 (2002).
  • Vierboom MP, Jonker M, Bontrop RE, ‘t Hart B. Modeling human arthritic diseases in nonhuman primates. Arthritis Res. Ther.7(4), 145–154 (2005).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338(5), 278–285 (1998).
  • ‘t Hart BA, Vogels JT, Bauer J, Brok HPM, Blezer E. Non-invasive measurement of brain damage in a primate model of multiple sclerosis. Trends Mol. Med.10(2), 85–91 (2004).
  • Philippens IH, Melchers BP, Roeling TA, Bruijnzeel PL. Behavioral test systems in marmoset monkeys. Behav. Res. Methods Instrum. Comput.32(1), 173–179 (2000).
  • Scott L, Pearce P, Fairhall S, Muggleton N, Smith J. Training nonhuman primates to cooperate with scientific procedures in applied biomedical research. J. Appl. Anim. Welf. Sci.6(3), 199–207 (2003).
  • Spinelli S, Pennanen L, Dettling AC, Feldon J, Higgins GA, Pryce CR. Performance of the marmoset monkey on computerized tasks of attention and working memory. Brain Res. Cogn. Brain Res.19(2), 123–137 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.