27
Views
4
CrossRef citations to date
0
Altmetric
Review

Environmental factors and the induction of autoimmunity in primary biliary cirrhosis

, , , &
Pages 239-245 | Published online: 10 Jan 2014

References

  • Abbas AK, Lohr J, Knoechel B. Balancing autoaggressive and protective T cell responses. J. Autoimmun.28, 59–61 (2007).
  • Blank M, Shoenfeld Y. B cell targeted therapy in autoimmunity. J. Autoimmun.28, 62–68 (2007).
  • Youinou P. B cell conducts the lymphocyte orchestra. J. Autoimmun.28, 143–151 (2007).
  • Selmi C, Mayo MJ, Bach N et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology127, 485–492 (2004).
  • Invernizzi P, Miozzo M, Battezzati PM et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet363, 533–535 (2004).
  • Victora GD, Bilate AM, Socorro-Silva A et al. Mother-child immunological interactions in early life affect long-term humoral autoreactivity to heat shock protein 60 at age 18 years. J. Autoimmun.29, 38–43 (2007).
  • Washburn LR, Dang H, Tian J, Kaufman DL. The postnatal maternal environment influences diabetes development in nonobese diabetic mice. J. Autoimmun.28, 19–23 (2007).
  • Rieger R, Gershwin ME. The X and why of xenobiotics in primary biliary cirrhosis. J. Autoimmun.28, 76–84 (2007).
  • Oertelt S, Rieger R, Selmi C et al. A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology45, 659–665 (2007).
  • Van de Water J, Gershwin ME, Leung P, Ansari A, Coppel RL. The autoepitope of the 74-kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. J. Exp. Med.167, 1791–1799 (1988).
  • Worman HJ, Courvalin JC. Antinuclear antibodies specific for primary biliary cirrhosis. Autoimmun. Rev.2, 211–217 (2003).
  • Wesierska-Gadek J, Penner E, Battezzati PM et al. Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology43, 1135–1144 (2006).
  • Van de Water J, Ansari A, Prindiville T et al. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J. Exp. Med.181, 723–733 (1995).
  • Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J. Exp. Med.181, 1835–1845 (1995).
  • Shimoda S, Van de Water J, Ansari A et al. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J. Clin. Invest.102, 1831–1840 (1998).
  • Shimoda S, Nakamura M, Ishibashi H et al. Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis. Gastroenterology124, 1915–1925 (2003).
  • Kita H, Lian ZX, Van de Water J et al. Identification of HLA-A2-restricted CD8+ cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J. Exp. Med.195, 113–123 (2002).
  • Sharma R, Jarjour WN, Zheng L, Gaskin F, Fu SM, Ju ST. Large functional repertoire of regulatory T-cell suppressible autoimmune T cells in scurfy mice. J. Autoimmun.29, 10–19 (2007).
  • Lan RY, Cheng C, Lian ZX et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology43, 729–737 (2006).
  • Rose NR. The role of infection in the pathogenesis of autoimmune disease. Semin. Immunol.10, 5–13 (1998).
  • Culp KS, Fleming CR, Duffy J, Baldus WP, Dickson ER. Autoimmune associations in primary biliary cirrhosis. Mayo Clin. Proc.57, 365–370 (1982).
  • George J, Levy Y, Shoenfeld Y. Smoking and immunity: an additional player in the mosaic of autoimmunity. Scand. J. Immunol.45, 1–6 (1997).
  • Fernandes G. Dietary lipids and risk of autoimmune disease. Clin. Immunol. Immunopathol.72, 193–197 (1994).
  • Gershwin ME, Selmi C, Worman HJ et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology42, 1194–1202 (2005).
  • Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the United States. Hepatology33, 16–21 (2001).
  • Abu-Mouch S, Selmi C, Benson GD et al. Geographic clusters of primary biliary cirrhosis. Clin. Dev. Immunol.10, 127–131 (2003).
  • Triger DR. Primary biliary cirrhosis: an epidemiological study. Br. Med. J.281, 772–775 (1980).
  • Ala A, Stanca CM, Bu-Ghanim M et al. Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology43, 525–531 (2006).
  • Kaplan MM. Primary biliary cirrhosis. N. Engl. J. Med.335, 1570–1580 (1996).
  • Hamlyn AN, Macklon AF, James O. Primary biliary cirrhosis: geographical clustering and symptomatic onset seasonality. Gut24, 940–945 (1983).
  • Myszor M, James OF. The epidemiology of primary biliary cirrhosis in north-east England: an increasingly common disease? Q. J. Med.75, 377–385 (1990).
  • Metcalf JV, Bhopal RS, Gray J, Howel D, James OF. Incidence and prevalence of primary biliary cirrhosis in the city of Newcastle upon Tyne, England. Int. J. Epidemiol.26, 830–836 (1997).
  • James OF, Bhopal R, Howel D, Gray J, Burt AD, Metcalf JV. Primary biliary cirrhosis once rare, now common in the United Kingdom? Hepatology30, 390–394 (1999).
  • Eriksson S, Lindgren S. The prevalence and clinical spectrum of primary biliary cirrhosis in a defined population. Scand. J. Gastroenterol.19, 971–976 (1984).
  • Lofgren J, Jarnerot G, Danielsson D, Hemdal I. Incidence and prevalence of primary biliary cirrhosis in a defined population in Sweden. Scand. J. Gastroenterol.20, 647–650 (1985).
  • Danielsson A, Boqvist L, Uddenfeldt P. Epidemiology of primary biliary cirrhosis in a defined rural population in the northern part of Sweden. Hepatology11, 458–464 (1990).
  • Rautiainen H, Salomaa V, Niemela S et al. Prevalence and incidence of primary biliary cirrhosis are increasing in Finland. Scand. J. Gastroenterol.42, 1347–1353 (2007).
  • Remmel T, Remmel H, Uibo R, Salupere V. Primary biliary cirrhosis in Estonia. With special reference to incidence, prevalence, clinical features, and outcome. Scand. J. Gastroenterol.30, 367–371 (1995).
  • Triger DR, Berg PA, Rodes J. Epidemiology of primary biliary cirrhosis. Liver4, 195–200 (1984).
  • Pla X, Vergara M, Gil M et al. Incidence, prevalence and clinical course of primary biliary cirrhosis in a Spanish community. Eur. J. Gastroenterol. Hepatol.19, 859–864 (2007).
  • Shibata M, Onozuka Y, Morizane T et al. Prevalence of antimitochondrial antibody in Japanese corporate workers in Kanagawa prefecture. J. Gastroenterol.39, 255–259 (2004).
  • Sakauchi F, Mori M, Zeniya M, Toda G. A cross-sectional study of primary biliary cirrhosis in Japan: utilization of clinical data when patients applied to receive public financial aid. J. Epidemiol.15, 24–28 (2005).
  • Watson RG, Angus PW, Dewar M, Goss B, Sewell RB, Smallwood RA. Low prevalence of primary biliary cirrhosis in Victoria, Australia. Melbourne Liver Group. Gut36, 927–930 (1995).
  • Sood S, Gow PJ, Christie JM, Angus PW. Epidemiology of primary biliary cirrhosis in Victoria, Australia: high prevalence in migrant populations. Gastroenterology127, 470–475 (2004).
  • Kim WR, Lindor KD, Locke GR et al. Epidemiology and natural history of primary biliary cirrhosis in a US community. Gastroenterology119, 1631–1636 (2000).
  • Arbour L, Rupps R, Field L et al. Characteristics of primary biliary cirrhosis in British Columbia’s first nations population. Can. J. Gastroenterol.19, 305–310 (2005).
  • Oldstone MB. Molecular mimicry as a mechanism for the cause and a probe uncovering etiologic agent(s) of autoimmune disease. Curr. Top. Microbiol. Immunol.145, 127–135 (1989).
  • Butler P, Hamilton-Miller JM, McIntyre N, Burroughs AK. Natural history of bacteriuria in women with primary biliary cirrhosis and the effect of antimicrobial therapy in symptomatic and asymptomatic groups. Gut36, 931–934 (1995).
  • Tsuneyama K, Harada K, Kono N et al. Scavenger cells with Gram-positive bacterial lipoteichoic acid infiltrate around the damaged interlobular bile ducts of primary biliary cirrhosis. J. Hepatol.35, 156–163 (2001).
  • Agrawal S, Kandimalla ER. Modulation of Toll-like receptor 9 responses through synthetic immunostimulatory motifs of DNA. Ann. NY Acad. Sci.1002, 30–42 (2003).
  • Shimoda S, Nakamura M, Shigematsu H et al. Mimicry peptides of human PDC-E2 163–176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis. Hepatology31, 1212–1216 (2000).
  • Van de Water J, Ishibashi H, Coppel RL, Gershwin ME. Molecular mimicry and primary biliary cirrhosis: premises not promises. Hepatology33, 771–775 (2001).
  • Kaplan MM. Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis. Am. J. Gastroenterol.99, 2147–2149 (2004).
  • Selmi C, Balkwill DL, Invernizzi P et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology38, 1250–1257 (2003).
  • Fujii K, Kikuchi S, Satomi M, Ushio-Sata N, Morita N. Degradation of 17b-estradiol by a Gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl. Environ. Microbiol.68, 2057–2060 (2002).
  • Long SA, Quan C, Van de Water J et al. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J. Immunol.167, 2956–2963 (2001).
  • Shi T, Fredrickson JK, Balkwill DL. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J. Ind. Microbiol. Biotechnol.26, 283–289 (2001).
  • Padgett KA, Selmi C, Kenny TP et al. Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J. Autoimmun.24, 209–219 (2005).
  • Olafsson S, Gudjonsson H, Selmi C et al. Antimitochondrial antibodies and reactivity to N. aromaticivorans proteins in Icelandic patients with primary biliary cirrhosis and their relatives. Am. J. Gastroenterol.99, 2143–2146 (2004).
  • Selmi C, Ross SR, Ansari AA et al. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis. Gastroenterology127, 493–501 (2004).
  • Njoku D, Laster MJ, Gong DH, Eger EI 2nd, Reed GF, Martin JL. Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth. Analg.84, 173–178 (1997).
  • Christen U, Jeno P, Gut J. Halothane metabolism: the dihydrolipoamide acetyltransferase subunit of the pyruvate dehydrogenase complex molecularly mimics trifluoroacetyl-protein adducts. Biochemistry32, 1492–1499 (1993).
  • Bruggraber SF, Leung PS, Amano K et al. Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Gastroenterology125, 1705–1713 (2003).
  • Leung PS, Quan C, Park O et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J. Immunol.170, 5326–5332 (2003).
  • Amano K, Leung PS, Xu Q et al. Xenobiotic-induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible. J. Immunol.172, 6444–6452 (2004).
  • Leung PS, Park O, Tsuneyama K et al. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J. Immunol.179, 2651–2657 (2007).
  • Rieger R, Leung PS, Jeddeloh MR et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J. Autoimmun.27, 7–16 (2006).
  • Parikh-Patel A, Gold E, Utts J, Gershwin ME. The association between gravidity and primary biliary cirrhosis. Ann. Epidemiol.12, 264–272 (2002).
  • Sekigawa I, Kawasaki M, Ogasawara H et al. DNA methylation: its contribution to systemic lupus erythematosus. Clin. Exp. Med.6, 99–106 (2006).
  • Patole PS, Pawar RD, Lichtnekert J et al. Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J. Autoimmun.29, 52–59 (2007).
  • Stoll ML, Price KD, Silvin CJ, Jiang F, Gavalchin J. Immunization with peptides derived from the idiotypic region of lupus-associated autoantibodies delays the development of lupus nephritis in the (SWR×NZB)F(1) murine model. J. Autoimmun.29, 30–37 (2007).
  • Tutaj M, Szczepanik M. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRab+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). J. Autoimmun.28, 208–215 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.