6
Views
9
CrossRef citations to date
0
Altmetric
Review

Identification and characterization of allergens: in vitro approaches

&
Pages 471-479 | Published online: 10 Jan 2014

References

  • Rustemeyer T, Hoogstraten IMW, von Blomberg BME, Scheper RJ. Mechanisms in allergic contact dermatitis. In: Contact Dermatitis (4th Edition). Frosch PJ, Menné T, Lepoittevin J-P (Eds). Springer-Verlag, Heidelberg, Germany 11–44 (2006).
  • Dupuis G, Benezra C. Allergic Contact Dermatitis to Simple Chemicals: A Molecular Approach. Marcel Dekker Inc., NY, USA (1982).
  • Lepoittevin J-P, Basketter DA, Dooms-Goossens A, Karlberg A-T. Allergic Contact Dermatitis; The Molecular Basis. Springer-Verlag, Heidelberg, Germany (1997).
  • Karlberg A-T, Basketter DA, Goossens A, Lepoittevin J-P. Regulatory classification of substances oxidized to skin sensitizers by exposure to the air. Contact Derm.40, 183–188 (1999).
  • Matura M, Skold M, Borje A et al. Selected oxidized fragrance terpenes are common contact allergens. Contact Derm.52, 320–328 (2005).
  • Pease Smith CK, Basketter DA, Patlewicz GY. Contact allergy: the role of skin chemistry and metabolism. Clin. Exp. Dermatol.28, 177–183 (2003).
  • Elahi EM, Wright Z, Hinselwood D et al. Protein binding and metabolism influence the relative skin sensitisation potency of cinnamic compounds. Chem. Res. Toxicol.17, 301–310 (2004).
  • Smith CK, Hotchkiss SAM. Allergic Contact Dermatitis: Chemical and Metabolic Mechanisms. Taylor & Francis Ltd, London, UK (2001).
  • Divkovic M, Pease CM, Gerberick GF, Basketter DA. Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitisation. Contact Derm.53, 189–200 (2005).
  • Proksch E, Folster-Holst R, Jensen JM. Skin barrier function, epidermal proliferation and differentiation in eczema. J. Dermatol. Sci.43, 159–169 (2006).
  • Matzinger P. Friendly and dangerous signals. Is the tissue in control? Nat. Immunol.8, 11–13 (2007).
  • Welss T, Basketter DA, Schroder KR. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro18, 231–243 (2004).
  • Cumberbatch M, Clelland K, Dearman RJ, Kimber I. Impact of cutaneous IL-10 on resident epidermal Langerhans’ cells and the development of polarized immune responses. J. Immunol.175, 43–50 (2005).
  • Griffiths CE, Dearman RJ, Cumberbatch M, Kimber I. Cytokines and Langerhans cell mobilisation in mouse and man. Cytokine32, 67–70 (2005).
  • Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol.4, 211–222 (2004).
  • Steinhoff M, Brzoska T, Luger TA. Keratinocytes in epidermal immune responses. Curr. Opin. Allergy Clin. Immunol.1, 469–476 (2001).
  • Van Och FMM, Vandebriel RJ, De Jong WH, Van Loveren H. Effect of prolonged exposure to low antigen concentration for sensitization. Toxicology184, 23–30 (2003).
  • Smith HR, Basketter DA, McFadden JP. Irritant dermatitis, irritancy and its role in allergic contact dermatitis. Clin. Exp. Dermatol.27, 138–146 (2002).
  • Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CE. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br. J. Dermatol.142, 401–412 (2000).
  • Kissenpfennig A, Malissen B. Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends Immunol.27, 132–139 (2006).
  • Cumberbatch M, Dearman RJ, Kimber I. Langerhans cells require signals from both tumour necrosis factor-α and interleukin-1β for migration. Immunology92, 388–395 (1997).
  • Cumberbatch M, Dearman RJ, Griffiths CE, Kimber I. Epidermal Langerhans cell migration and sensitisation to chemical allergens. APMIS111, 797–804 (2003).
  • Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J. Exp. Med.166, 1654–1667 (1987).
  • Henri SD, Vremec A, Kamath J et al. The dendritic cell populations of mouse lymph nodes. J. Immunol.167, 741–748 (2001).
  • Sallusto F, Lanzavecchia A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev.177, 134–140 (2000).
  • Martin-Fontecha A, Sebastiani S, Hopken UE et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med.198, 615–621 (2003).
  • Reis e Sousa C. Dendritic cells in a mature age. Nat. Rev. Immunol.6, 476–474 (2006).
  • Basketter DA, Gerberick GF, Kimber I. The local lymph node assay EC3 value: status of validation. Contact Derm. (2007) (In press).
  • Basketter DA, Evans P, Fielder RJ, Gerberick GF, Dearman RJ, Kimber I. Local lymph node assay – validation, conduct and use in practice. Food Chem. Toxicol.40, 593–598 (2002).
  • Lepoittevin J-P, Basketter DA, Goosssens A, Karlberg A-T. Allergic Contact Dermatitis. The Molecular Basis. Springer-Verlag, Heidelberg, Germany (1997).
  • Lepoittevin J-P. Molecular aspects of allergic contact dermatitis. In: Contact Dermatitis (4th Edition). Frosch PJ, Menné T, Lepoittevin J-P (Eds). Springer-Verlag, Heidelberg, Germany, 45–68 (2006).
  • Aptula AO, Patlewicz G, Roberts DW. Skin sensitization: reaction mechanistic applicability domains for structure–activity relationships. Chem. Res. Toxicol.18(9), 1420–1426 (2005).
  • Roberts DW, Patlewicz G, Kern PS et al. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitisation. Chem. Res. Toxicol. 10.1021/tx700024w (2007) (In press).
  • Barratt MD, Langowski JJ. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens. J. Chem. Inf. Comput. Sci.39, 294–298 (1999).
  • Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA. Structure–activity relationships for skin sensitisation: recent improvements to DEREK for windows. Contact Derm.55, 342–347 (2006).
  • Patlewicz G, Aptula AO, Villares EU et al. An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential. SAR QSAR Env. Res. (2007) (In Press).
  • Roberts DW, Williams DL. The derivation of quantitative correlations between skin sensitization and physico–chemical parameters for alkylating agents and their application to experimental data for sultones. J. Theor. Biol.99, 807–825 (1982).
  • Roberts DW, Basketter DA. Quantitative structure–activity relationships: sulfonate esters in the local lymph node assay. Contact Derm.42(3), 154–161 (2000).
  • Aptula AO, Roberts DW, Patlewicz G. Mechanistic applicability domains for non-animal based toxicological endpoints. QSAR analysis of the Schiff Base applicability domain for skin sensitization. Chem. Res. Toxicol.19(9), 1228–1233 (2006).
  • Patlewicz G, Basketter DA, Pease CK et al. Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Derm.50, 91–97 (2004).
  • Roberts DW, Aptula AO, Cronin MTD, Hulzebos E, Patlewicz G. Global (Q)SARs for skin sensitization – assessment against OECD principles. SAR QSAR Environ. Res.18, 343–365 (2007).
  • Aptula AO, Roberts DW, Pease CK. Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles. Contact Derm.56, 54–56 (2007).
  • Karlberg A-T, Basketter DA, Goossens A, Lepoittevin J-P. Regulatory classification of substances oxidized to skin sensitizers by exposure to the air. Contact Derm.40, 183–188 (1999).
  • Nohynek GJ, Duche D, Garrigues A, Meunier PA, Toutain H, Leclaire J. Under the skin: biotransformation of para-aminophenol and para-phenylenediamine in reconstructed human epidermis and human hepatocytes. Toxicol. Lett.158, 196–212 (2005).
  • Eilstein J, Gimenez-Arnau E, Duche D, Rousset F, Lepoittevin JP. Synthesis and reactivity toward nucleophilic amino acids of 2,5-(13C)-dimethyl-p-benzoquinonediimine. Chem. Res. Toxicol.19, 1248–1256 (2006).
  • Pease Smith CK, Basketter DA, Patlewicz GY. Contact allergy: the role of skin chemistry and metabolism. Clin. Exp. Dermatol.28, 177–183 (2003).
  • Mekenyan O, Dimitrov S, Dimitrova N et al. Metabolic activation of chemicals: in-silico simulation. SAR QSAR Environ. Res.17, 107–120 (2006).
  • Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP. Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci.81(2), 332–343 (2004).
  • Alvarez-Sanchez R, Basketter DA, Pease CK, Lepoittevin J-P. Covalent binding of the 13C-labeled skin sensitizers 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) to a model peptide and glutathione. Biorg. Med. Chem. Lett.14, 365–368 (2004).
  • Aleksic M, Pease CK, Basketter DA, Panico M, Morris HR, Dell A. Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxiol. In Vitro21(4), 723–733 (2007).
  • Aleksic M, Thain E, Gutsell SJ, Pease CK, Basketter DA. The role of non-covalent protein binding in skin sensitisation potency of chemicals. Cutan. Ocul. Toxicol.26(2), 161–169 (2007).
  • Elahi EM, Wright Z, Hinselwood D, Hotchkiss SAM, Basketter DA, Smith Pease CK. Protein binding and metabolism influence the relative skin sensitisation potency of cinnamic compounds. Chem. Res. Toxicol.17, 301–310 (2004).
  • Alvarez-Sanchez R, Divkovic M, Basketter D et al. Effect of glutathione on the covalent binding of the 13C labeled skin sensitizer 5-chloro-2-methylisothiazol-3-one (MCI) to human serum albumin: Identification of adducts by nuclear magnetic resonance, matrix-assisted laser desorption/ionization mass spectrometry and nanoelectrospray tandem mass spectrometry. Chem. Res. Toxicol.17, 1280–1288 (2004).
  • Martin S, Lappin MB, Kohler J et al. Peptide immunization indicates that CD8+ T cells are the dominant effector cells in trinitrophenyl-specific contact hypersensitivity. J. Invest. Dermatol.115, 260–266 (2000).
  • Thierse HJ, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology209, 101–107 (2005).
  • Basketter DA, Casati S, Cronin MTD et al. Skin sensitisation and epidermal disposition. Altern. Lab. Anim.35, 137–154 (2007).
  • Kretsos K, Kasting GB, Nitsche JM. Distributed diffusion-clearance model for transient drug distribution within the skin. J. Pharm. Sci.93, 2820–2835 (2004).
  • Smith CK, Hotchkiss SAM. Allergic Contact Dermatitis: Chemical and Metabolic Mechanisms. Taylor and Francis, London, UK (2002).
  • Bergstrom MA, Luthman K, Nilsson JL, Karlberg AT. Conjugated dienes as prohaptens in contact allergy: in vivo and in vitro studies of structure–activity relationships, sensitizing capacity, and metabolic activation. Chem. Res. Toxicol.19(6), 760–769 (2006).
  • Kandarova H, Liebsch M, Gerner I et al. The EpiDerm test protocol for the upcoming ECVAM validation study on in vitro skin irritation tests – an assessment of the performance of the optimised test. Altern. Lab. Anim.33, 351–367 (2005).
  • Cotovio J, Grandidier MH, Portes P, Roguet R, Rubinstenn G. The in vitro acute skin irritation of chemicals: optimisation of the EPISKIN prediction model within the framework of the ECVAM validation process. Altern. Lab. Anim.33, 329–349 (2005).
  • Perkins NC, Heard CM. In vitro dermal and transdermal delivery of doxycycline from ethanol/migliol 840 vehicles. Int. J. Pharm.190, 155–164 (1999).
  • Welss T, Basketter DA, Schroder KR. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro18, 231–243 (2004).
  • Frosch PJ, John SM. Clinical aspects of irritant contact dermatitis. In: Contact Dermatitis (4th Edition). Frosch PJ, Menné T, Lepoittevin J-P (Eds). Springer-Verlag, Heidelberg, Germany, 255–294 (2006).
  • Fentem JH, Briggs D, Chesne C et al. A prevalidation study on in vitro tests for acute skin irritation. results and evaluation by the management team. Toxicol. In Vitro15, 57–93 (2001).
  • Casati S, Aeby P, Basketter DA et al. Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. Altern. Lab. Anim.33, 47–62 (2005).
  • Ryan CA, Gerberick GF, Gildea LA et al. Interactions of contact allergens with dendritic cells: opportunities and challenges for the development of novel approaches to hazard assessment. Toxicol. Sci.88, 4–11 (2005).
  • Ohl L, Mohaupt M, Czeloth N et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity21, 279–288 (2004).
  • Ratzinger G, Stoitzner P, Ebner S et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol.168, 4361–4371 (2002).
  • Caux C, it-Yahia S, Chemin K et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol.22, 345–369 (2000).
  • Kimber I, Cumberbatch M, Betts CJ, Dearman RJ. Dendritic cells and skin sensitisation hazard assessment. Toxicol. In Vitro18, 195–202 (2004).
  • Antonopoulos H, Cumberbatch M, Dearman RJ, Daniel RJ, Kimber I, Groves RW. Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice. J. Immunol.166, 3672–3677 (2001).
  • Cumberbatch M, Dearman RJ, Antonopoulos C, Groves RW, Kimber I. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-α- and IL-1 β-dependent mechanism. Immunology102, 323–330 (2001).
  • Wang B, Zhuang LH, Fujisawa H et al. Enhanced epidermal Langerhans cell migration in IL-10 knockout mice. J. Immunol.162, 277–283 (1999).
  • Pichowski JS, Cumberbatch M, Dearman RJ, Kimber I, Basketter DA. Investigation of induced changes in interleukin 1β mRNA expression by cultured human dendritic cells as an in vitro approach to skin sensitization testing. Toxicol. In Vitro14(4), 351–360 (2000).
  • Pichowski JS, Cumberbatch M, Dearman RJ, Basketter DA, Kimber I. Allergen-induced changes in interleukin 1β (IL-1β) mRNA expression by human blood-derived dendritic cells: inter-individual differences and relevance for sensitization testing. J. Appl. Toxicol.21, 115–121 (2001).
  • Krasteva M, Moulon C, Peguet-Navarro J, Courtellemont P, Redziniak G, Schmitt D. In vitro sensitization of human T cells with hapten-treated Langerhans cells: a screening test for the identification of contact allergens. Curr. Probl. Dermatol.25, 28–36 (1996).
  • Sakaguchi H, Ashikaga T, Miyazawa M et al. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol. In Vitro20(5), 774–784 (2006).
  • Lutz MB, Kukutsch N, Ogilvie LJ et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Meth.223, 77–92 (1999).
  • EU Directive 2003/15/EC of the European Parliament and the Council of 27 February 2003 amending Council Directive 76/768/EEC on the approximations of laws of the Member States relating to cosmetic products. Off. J. Eur. UnionL66, 26–35 (2003).
  • Ryan C, Gildea LA, Hulette BC, Dearman RJ, Kimber I, Gerberick GF. Gene expression changes in peripheral blood-derived dendritic cells following exposure to a contact allergen. 6. Toxicol. Lett.150, 301–316 (2004).
  • Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J. Immunol.166, 3837–3845 (2001).
  • Aiba S, Manome H, Yoshino Y, Tagami H. In vitro treatment of human transforming growth factor-β (1)-treated monocyte-derived dendritic cells with haptens can induce the phenotypic and functional changes similar to epidermal Langerhans cells in the initiation phase of allergic contact sensitivity reaction. Immunology101, 68–75 (2000).
  • Aiba S, Manome H, Nakagawa S et al. p38 mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J. Invest. Dermatol.120, 390–399 (2003).
  • Tuschl H, Kovac R, Weber E. The expression of surface markers on dendritic cells as indicators for the sensitizing potential of chemicals. Toxicol. In Vitro14, 541–549 (2000).
  • De Smedt T, Butz E, Smith J et al. CD8α (-) and CD8α (+) subclasses of dendritic cells undergo phenotypic and functional maturation in vitro and in vivo. J. Leukoc. Biol.69, 951–958 (2001).
  • Ashikaga T, Hoya M, Itagaki H, Katsumura Y, Aiba S. Evaluation of CD86 expression and MHC class II molecule internalization in THP-1 human monocyte cells as predictive endpoints for contact sensitizers. Toxicol. In Vitro16, 711–716 (2002).
  • Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki M. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol. In Vitro17, 221–228 (2003).
  • Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol. Appl. Pharmacol.220, 113–124 (2007).
  • Hulette BC, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol. Appl. Pharmacol.182, 226–233 (2002).
  • Azam P, Peiffer JL, Chamousset D et al. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol. Appl. Pharmacol.212(1), 14–23 (2006).
  • Ashikaga T, Yoshida Y, Hirota M et al. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT) I. Optimization of the h-CLAT protocol. Toxicol. In Vitro20(5), 767–773 (2006).
  • Sakaguchi H, Miyazawa M, Yoshida Y, Ito Y, Suzuki H. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1. Arch. Derm. Res.298, 427–437 (2007).
  • Hauser C, Katz SI. Generation and characterization of T-helper cells by primary in vitro sensitization using Langerhans cells. Immunol. Rev.117, 67–84 (1990).
  • Moulon C, Peguet-Navarro J, Courtellemont P, Redziniak G, Schmitt D. In vitro primary sensitization and restimulation of hapten-specific T cells by fresh and cultured human epidermal Langerhans’ cells. Immunology80, 373–379 (1993).
  • Guironnet G, Biez-Gauthier C, Rousset F, Schmitt D, Peguet-Navarro J. In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells. Toxicol. In Vitro14, 517–522 (2000).
  • Kimber I, Dearman RJ, Betts et al. The local lymph node assay and skin sensitisation: a cut-down screen to reduce animal requirements. Contact Derm.54, 181–185 (2006).
  • Jowsey IR, Basektter DA, Westmoreland C, Kimber I. A future approach to measuring relative skin sensitization potency: a proposal. J. Appl. Toxicol.26, 341–350 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.