5
Views
2
CrossRef citations to date
0
Altmetric
Review

Pustular skin diseases refl ect distinct innate defense pathways

&
Pages 465-475 | Published online: 10 Jan 2014

References

  • Iwatsuki K, Yamasaki O, Morizane S, Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. J. Dermatol. Sci.42, 203–214 (2006).
  • Fox AB, Hambrick GW Jr. Recreationally associated Pseudomonas aeroginosa folliculitis. Arch. Dermatol.120, 1304–1307 (1984).
  • Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanism, and associated risks. Clin. Microbiol. Rev.10, 505–520 (1997).
  • Medzhitov R, Janeway CA. Innate immunity. N. Engl. J. Med.343, 338–344 (2000).
  • Foster TJ. Immune evasion by staphylococci. Nat. Rev. Microbiol.3, 948–958 (2005).
  • Mertz PM, Cardenas TCP, Snyder RV, Kinney MA, Davis SC, Plano LRW. Staphylococcus aureus virulence factors associated with infected skin lesions. Arch. Dermatol.143, 1259–1263 (2007).
  • Fournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin. Microbiol. Rev.18, 521–540 (2005).
  • Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.168, 4531–4537 (2002).
  • Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr. Opin. Immunol.14, 123–128 (2002).
  • Carneiro LAM, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH. Nod-like proteins in inflammation and disease. J. Pathol.214, 136–148 (2008).
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature442, 39–44 (2006).
  • Bottazzi B, Garlanda C, Salvatori G, Jeannin P, Manfredi A, Mantovani A. Pentraxins as a key component of innate immunity. Curr. Opin. Immunol.18, 10–15 (2006).
  • Eisen DP, Liley HG, Minchinton RM. Alternatives to conventional vaccines – mediators of innate immunity. Curr. Drug Targets5, 89–105 (2004).
  • Imler JL, Hoffmann JA. Toll-like receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top. Microbiol. Immunol.270, 63–80 (2002).
  • O’Neill JA. Signal transduction pathwaysactivated by the IL-1 receptor/Toll-like receptor superfamily. Curr. Top. Microbiol. Immunol.270, 47–62 (2002).
  • Underhill DM. Toll-like receptors: networking for success. Eur. J. Immunol.33, 1767–1775 (2003).
  • Hemmrich G, Miller DJ, Bosch TCG. The evolution of immunity: a low-life perspective. Trends Immunol.28, 449–454 (2007).
  • Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol.14, 103–110 (2002).
  • Travassos LH, Giardin SE, Philpott DJ et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Reports5, 1000–1006 (2004).
  • Schröder JM, Harder J. Antimicrobial peptides and proteins. Cell. Mol. Life Sci.63, 469–486 (2006).
  • Graham GM, Farrar MD, Cruse-Sawyer JE et al. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br. J. Dermatol.150, 421–428 (2004).
  • Schaller M, Loewenstein M, Borelli C et al. Induction of a chemoattractive proinflammatory cytokine response after stimulation of keratinocytes with Propionibacterum acnes and coproporphyrin III. Br. J. Dermatol.153, 66–71 (2005).
  • Mempel M, Voelcker V, Köllisch G et al. Toll-like receptor expression in human keratinocytes: nuclear factor κB controlled gene activation by Staphylococcus aureus is Toll-like receptor 2 but not Toll-like receptor 4 or platelet activating factor receptor dependent. J. Invest. Dermatol.121, 1389–1396 (2003).
  • Sasaki T, Kano R, Sato H, Nakamura Y, Watanabe S, Hasegawa A. Effects of staphylococci on cytokine production from human keratinocytes. Br. J. Dermatol.148, 46–50 (2003).
  • Schröder JM, Gregory H, Young J, Christophers E. Neutrophil-activating proteins in psoriasis. J. Invest. Dermatol.98, 241–247 (1992).
  • Schröder JM, Christophers E. The biology of NAP-1/IL-8, a neutrophil activating cytokine. Immunol. Ser.57, 387–416 (1992).
  • Schröder JM, Christophers E. Identification of C5a des arg and anionic neutrophil-activating peptide (ANAP) in psoriatic scales. J. Invest. Dermatol.87, 53–58 (1986).
  • Fritz JH, Le Bourhis L, Magalhaes JG, Philpott DJ. Innate immune recognition at the epithelial barrier drives adaptive immunity: APCs take the back seat. Trends Immunol.29, 41–49 (2008).
  • Fritz JH, Le Bourhis L, Sellge E et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity26, 445–459 (2007).
  • Gamero AM, Oppenheim JJ. IL-1 can act as number one. Immunity24, 16–17 (2006).
  • Miller LS, Pietras EM, Uricchio LH et al. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureusin vivo. J. Immunol.179, 6933–6942 (2007).
  • Matsukawa A, Yoshimura T, Maeda T, Takahashi T, Ohkawara S, Yoshinaga M. Analysis of the cytokine network among tumor necrosis factor α, interleukin-1 β, interleukin-8, and interleukin-1 receptor antagonist in monosodium orate crystal-induced rabbit arthritis. Lab. Invest.78, 559–569 (1998).
  • Matsukawa A, Yoshimura T, Fujiwara K, Maeda T, Ohkawara S, Yoshinaga M. Involvement of growth-related protein in lipopolysaccharide-induced rabbit arthritis: cooperation between growth-related protein and IL8, and interrelated regulation among TNF-α, IL-1, IL-1 receptor antagonist, IL-8, and growth-related protein. Lab. Invest.79, 591–600 (1999).
  • Miller LS, O’Connell RM, Gutierrez MA et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity24, 79–91 (2006).
  • Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest.117, 2517–2525 (2007).
  • Nickoloff BJ, Karabin GD, Barker JN et al. Cellular localization of interleukin 8 and its inducer, tumor necrosis factor-α in psoriasis. Am. J. Pathol.138, 129–140 (1991).
  • Sayers TJ, Wiltrout TA, Bull CA, Denn AC 3rd, Pilaro AM, Lokesh B. Effects of cytokines on polymorphonuclear neutrophil infiltration in the mouse: prostaglandine- and leukotriene-independent induction of infiltration by IL-1 and tumor necrosis factor. J. Immunol.141, 1670–1678 (1988).
  • Menegazzzi R, Cramer R, Patriarca P, Scheurich P, Dri P. Evidence that tumor necrosis factor α (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood84, 287–293 (1994).
  • Miskolci V, Rollins J, Vu HY, Ghosh CC, Davidson D, Vancurova I. NFκB is persistently activated in continuously stimulated human neutrophils. Mol. Med.13, 134–142 (2007).
  • Schmidt-Weber CB, Akdis M, Akdis CA. TH17 cells in the big picture of immunology. J. Allergy Clin. Immunol.120, 247–254 (2007).
  • Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8, 950–957 (2007).
  • Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.292, 1023–1029 (2007).
  • Kolls JK, Linden A. Interleukin 17 family members and inflammation. Immunity21, 467–476 (2004).
  • Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194, 519–527 (2001).
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis.190, 624–631 (2004).
  • Christophers E. Comorbidities in psoriasis. Clin. Dermatol.25, 529–534 (2007).
  • Baker H, Ryan TJ. Generalized pustular psoriasis. A clinical and epidemiological study of 104 cases. Br. J. Dermatol.80, 771–793 (1968).
  • Rocha-Pereira P, Santos-Silva A, Rebelo I et al. The inflammatory response in mild and severe psoriasis. Br. J. Dermatol.150, 917–928 (2004).
  • Sergeant A, Makrygeorgou A, Chan WC, Thorrat A, Burden D. C-reactive protein in psoriasis. Br. J. Dermatol.158, 417–419 (2008).
  • Beg AA. Endgenous ligands of Toll-like receptors: implications for regulating inflammatroy and immune responses. Trends Immunol.23, 509–512 (2002).
  • Biragyn A, Ruffini PA, Leifer CA et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science298, 1025–1029 (2002).
  • Lau CM, Broughton C, Tabor AS et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med.202, 1171–1177 (2005).
  • Lande R, Gregorio J, Facchinetti V et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007).
  • Korn T, Oukka M, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol.19(6), 362–371 (2007).
  • Bettelli E, Korn T, Kuchroo VK. Th17: The third member of the effector T cell trilogy. Curr. Opin. Immunol.19, 652–657 (2007).
  • Hemmi H, Kaisho O, Takeuchi S et al. Small anti-viral compounds acitivate immune cells via the TLR7 MyD88-dependent signalling pathway. Nat. Immunol.3, 196–200 (2002).
  • Jurk M, Heil F, Vollmer J et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R848. Nat. Immunol.3, 499 (2002).
  • Gilliet M, Conrad C, Geiges M et al. Psoriasis triggered by Toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch. Dermatol.140, 1490–1495 (2004).
  • Rajan N, Langtry JA. Generalized exacerbation of psoriasis associated with imiquimod cream treatment of superficial basal cell carcinomas. Clin. Exp. Dermatol.31, 140–141 (2006).
  • Fanti PA, Dika E, Vaccari S, Miscial C, Varotti C. Generalized psoriasis induced by topical treatment of actinic keratosis with imiquimod. Int. J. Dermatol.45, 1464–1465 (2006).
  • Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115, 407–417 (2005).
  • Claudy A. Pathogenesis of leukocytoclastic vasculitis. Eur. J. Dermatol.8, 75–79 (1998).
  • Nestle FO, Conrad C, Tun-Kyi A et al. Plasmacytoid predendritic cells (PDC) initiate psoriasis through IFN-a production. J. Exp. Med.202, 135–143 (2005).
  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23–IL17 immune pathway. Trends Immunol.27, 17–23 (2006).
  • Langowski JL, Kastelein RA, Oft M. Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol.28, 207–211 (2007)
  • Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest.116, 1218–1222 (2006).
  • Smits HH, van Beelen AJ, Hessle C et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur. J. Immunol.34, 1371–1380 (2004).
  • Dong C. Diversification of T-helper cell lineages: finding the family root of IL-17-producing cells. Nat. Rev. Immunol.6, 329–333 (2006).
  • Sa S, Valdez PA, Wu J et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggests potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol.78, 2229–2240 (2007).
  • Linden A, Laan M, Anderson GP. Neutrophils, interleukin-17A and lung disease. Eur. Respir. J.25, 159–172 (2005).
  • Yao Z, Paintner SL, Fanslow WC et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol.155, 5483–5486 (1995).
  • Shen F, Hu Z, Goswami J, Gaffen SL. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem.281, 24138–24148 (2006).
  • Patel DN, King CA, Bailey SR et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NFκB and C/EBPβ activation. J. Biol. Chem.282, 27229–27238 (2007).
  • Takematsu H, Tagami H. Quantification of chemotactic peptides (C5a anaphylatoxin and IL8) in psoriatic lesional skin. Arch. Dermatol.129, 74–80 (1993).
  • Katz Y, Nadiv O, Rapoport MJ, Loos M. IL-17 regulates gene expression and protein synthesis of the complement system, C3 and factor B, in skin fibroblasts. Clin. Exp. Immunol.120, 22–29 (2000).
  • Van de Kerkhof PC. Update on retinoid Therapy of psoriasis in: an update on the use of retinoids in dermatology. Dermatol. Ther.19, 252–263 (2006).
  • Christophers E, Griffith CE, Gaitanis G, van de Kerkhoff P. The unmet treatment need for moderate to severe psoriasis: results of a survey and chart view. J. Eur. Acad. Dermatol. Venereol.20, 921–925 (2006).
  • Mucida D, Park Y, Turovskaya O, Scott I, Kronenberg M, Choutre H. Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science317, 256–260 (2007).
  • Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology209, 123–129 (2005).
  • Sidoroff A, Dunant A, Vibout C et al. Risk factors for acute generalized exanthematous pustulosis (AGEP) – results of a multinational case-control study (EuroSCAR). Br. J. Dermatol.157, 989–996 (2007).
  • Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol. Rev.220, 214–224 (2007)
  • Wagner H. The immunobiology of the TLR9 subfamily. Trends Immunol.25, 381–386 (2004).
  • Johnson GB, Brunn GJ, Tang AH, Platt JL. Evolutionary clues to the functions of the Toll-like family as surveillance receptors. Trends Immunol.24, 19–24 (2003).
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin–IgG-complexes activate B cells by dual engagement of IgM and Toll-like receptor. Nature416, 603–607 (2002).
  • Lebre MC, van der Aar AMG, van Baarsen L et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J. Invest. Dermatol.127, 331–341 (2007).
  • Köllisch G, Kalali BN, Voelcker V et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology114, 531–541 (2005).
  • Nagase H, Okugawa S, Ota Y et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol.171, 3977–3982 (2003).
  • Hasan U, Chaffois C, Gaillard C et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol.174, 2942–2950 (2005).
  • Gorden KB, Gorski KS, Gibson SJ et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol.174, 1259–1268 (2005).
  • O’Neill L. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol.18, 3–9 (2006).
  • Jarrossay D, Napolitani G, Colonna M, Salusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol.31, 3388–3893 (2001)
  • Ito T, Amakawa R, Kaisho T et al. Interferon-α and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med.195, 1507–1112 (2002).
  • Krug A, Towarowski A, Britsch S et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with Cd40 ligand to induce high amounts of IL-12. Eur. J. Immunol.31, 3026–3037 (2001).
  • Kadowaki N, Ho S, Antonenko R et al. Subsetes of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194, 863–869 (2001).
  • Martinon F, Tschopp J. NLR join TLRs as innate sensors of pathogens. Trends Immunol.26, 447–454 (2005).
  • Uehara A, Fulimoto Y, Fukase K, Takada H. Various human epithelila cells express functional Toll-like receptors, NOD1 and NOD2, to produce antimicrobial peptides, but not proinflammatory cytokines. Mol. Immunol.44, 3100–3111 (2007).
  • Gutierrez O, Pipaon C, Inohara N et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor κB activation. J. Biol. Chem.277, 41701–41705 (2002).
  • Beiter K, Wartha F, Albiger B et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol.16, 401–407 (2006).
  • Fritz JH, Giardin SE, Fitting C et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol.35, 2459–2470 (2005).
  • Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to genereate interleukin-12 and T helper type 1 cells. Infect. Immun.73, 7067–7976 (2005).
  • Anders HJ. Innate pathogen recognition in the kidney: Toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney Int.72, 1051–1056 (2007).
  • Kato H, Sato S, Yoneyama M et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23, 19–28 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.